• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Nonparametirc Bayes-based infinite mixture model algorithms for Bioinformatics

Research Project

Project/Area Number 23700274
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Sensitivity informatics/Soft computing
Research InstitutionAoyama Gakuin University (2013)
Gakushuin University (2011-2012)

Principal Investigator

KABURAGI Takashi  青山学院大学, 理工学部, 助教 (10468861)

Project Period (FY) 2011 – 2012
Project Status Completed (Fiscal Year 2013)
Budget Amount *help
¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
Fiscal Year 2012: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2011: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Keywordsバイオインフォマティクス / ベイズ学習 / 隠れマルコフモデル / ベイジアンネットワーク / ノンパラメトリックベイズモデル / タンパク質機能予測 / 遺伝子発現データ / 時系列データ解析 / 機械学習 / ベイジアン年ットワークモデル / ベイジアンネットワークモデル
Research Abstract

We proposed a non-parametric Bayesan models to two bioinformatics applications: 1) automatic protein function prediction and 2) gene expression network inference. For automatic protein function prediction,we proposed a novel method to predict protein functions, called PreGO. PreGO is an algorithm based on an infinite mixture of hidden Markov models. Given an unannotated protein sequence, PreGO predicts the probability of existence of Gene Ontology terms. For time-varying network inference for gene expression data, we adopted a nonparametric Bayesian regression method to predict interactions between the genes. This method is expected to achieve more flexible regression capability in time-varying network. To obtain stronger robustness to noisy data, we employed the T-Process. The basic algorithm employed reversible jump Markov Chain Monte Carlo for inference of whole network structures. The method can handle (i) change point detection and (ii) network structure inference simultaneously.

Report

(4 results)
  • 2013 Annual Research Report   Final Research Report ( PDF )
  • 2012 Research-status Report
  • 2011 Research-status Report
  • Research Products

    (12 results)

All 2013 2012 2011

All Journal Article (1 results) (of which Peer Reviewed: 1 results) Presentation (11 results)

  • [Journal Article] Development of a Non-Contact Sensing Method for Scratching Activity Measurement2013

    • Author(s)
      Y. Kurihara, T. Kaburagi, K. Watanabe
    • Journal Title

      IEEE Sensors Journal

      Volume: 13(9) Issue: 9 Pages: 3325-3330

    • DOI

      10.1109/jsen.2013.2264283

    • Related Report
      2013 Annual Research Report
    • Peer Reviewed
  • [Presentation] PreGO : A Protein Function Prediction Algorithm Based on an Infinite Mixture of Hidden Markov and Bayesian Network Models2013

    • Author(s)
      T. Kaburagi, Y. Koizumi, K. Oota, T. Matsumoto
    • Organizer
      International Conference on Bioinformatics and Computational Biology 2013
    • Related Report
      2013 Final Research Report
  • [Presentation] Nonparametric Bayes-based heterogeneous Drosophila melanogaster gene regulatory network inference : T-Process regression2013

    • Author(s)
      H. Miyashita, T. Nakamura, Y. Ida, T. Kaburagi, T. Matsumoto
    • Organizer
      The 12th International Association of Science and Technology for Development (IASTED) International Conference on Artificial Intelligence and Applications
    • Related Report
      2013 Final Research Report
  • [Presentation] NONPARAMETRIC BAYES-BASED HETEROGENEOUS “Drosophila Melanogaster” GENE REGULATORY NETWORK INFERENCE: T-PROCESS REGRESSION2013

    • Author(s)
      H.Miyashita, T.Nakamura, Y.Ida, T.Matsumoto and T.Kaburagi
    • Organizer
      12th IASTED International Conference on Artificial Intelligence and Applications
    • Place of Presentation
      Innsbruck, Austria
    • Related Report
      2012 Research-status Report
  • [Presentation] PreGO: A Protein Function Prediction Algorithm Based on an Infinite Mixture of Hidden Markov and Bayesian Network Models2013

    • Author(s)
      Takashi Kaburagi, Yukihiro Koizumi, Kousuke Oota, Takashi Matsumoto
    • Organizer
      5th International Conference on Bioinformatics and Computational Biology
    • Place of Presentation
      Honolulu, Hawaii, USA
    • Related Report
      2012 Research-status Report
  • [Presentation] ノンパラメトリックベイジアンT過程アルゴリズムを用いた時間的構造変化を考慮した遺伝子発現ネットワーク推定2012

    • Author(s)
      宮下弘樹, 中村拓磨, 井田安俊, 鏑木崇史, 松本隆
    • Organizer
      情報処理学会, 第91回数理モデル化と問題解決・第32回バイオ情報学合同研究会
    • Related Report
      2013 Final Research Report
  • [Presentation] Protein Function Prediction Algorithm Based on Infinite State Hidden Markov Model and Bayesian Network Model2012

    • Author(s)
      T. Kaburagi, Y. Koizumi, G. Kobayashi, T. Matsumoto
    • Organizer
      International Conference Intelligent Systems for Molecular Biology 2012
    • Related Report
      2013 Final Research Report
  • [Presentation] Infinite Mixture Model Approach for Protein Function Prediction Algorithm Utilizing Hidden Markov Model and Bayesian Network Model with Dirichlet Process Prior2012

    • Author(s)
      T. Kaburagi, Y. Koizumi, G. Kobayashi, K. Oota, Y. Nakada, T. Matsumoto
    • Organizer
      International Conference Intelligent Systems for Molecular Biology 2011
    • Related Report
      2013 Final Research Report
  • [Presentation] ノンパラメトリックベイジアンT過程アルゴリズムによる時間的構造変化を考慮した遺伝子発現ネットワーク推定2012

    • Author(s)
      宮下弘樹,鈴木知彦,中村拓磨,井田安俊,松本 隆,鏑木崇史
    • Organizer
      情報処理学会 第91回MPS・第32回BIO合同研究発表会
    • Place of Presentation
      京都大学桂キャンパス 船井交流センター 国際連携ホール
    • Related Report
      2012 Research-status Report
  • [Presentation] Protein Function Prediction Algorithm Based on Infinite State Hidden Markov Model and Bayesian Network Model2012

    • Author(s)
      Takashi Kaburagi, Yukihiro Koizumi, Kosuke Oota, Go Kobayashi, Takashi Matsumoto
    • Organizer
      20th Annual International Conference on Intelligent Systems for Molecular Biology
    • Place of Presentation
      Long Beach CA, USA
    • Related Report
      2012 Research-status Report
  • [Presentation] Infinite Mixture Model Approach for Protein Function Prediction Algorithm Utilizing Hidden Markov Model and Bayesian Network Model with Dirichlet Process Prior2011

    • Author(s)
      Takashi Kaburagi, Yukihiro Koizumi, Go Kobayashi, Kousuke Oota, Yohei Nakada, Takashi Matsumoto
    • Organizer
      19th Annual International Conference on Intelligent Systems for Molecular Biology and 10th European Conference on Computational Biology
    • Place of Presentation
      オーストリア
    • Related Report
      2011 Research-status Report
  • [Presentation] ダイナミック・ガウス過程遺伝子発現ネットワーク予測:MCMC実装2011

    • Author(s)
      菊地貴彰、鈴木知彦、中田洋平、鏑木崇史、松本隆、君和田友美、和田圭司
    • Organizer
      情報処理学会 第25回バイオ情報学研究会
    • Place of Presentation
      沖縄
    • Related Report
      2011 Research-status Report

URL: 

Published: 2011-08-05   Modified: 2019-07-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi