Study of Eisenstein series and related Dirichlet series
Project/Area Number |
23740021
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Multi-year Fund |
Research Field |
Algebra
|
Research Institution | The University of Tokushima |
Principal Investigator |
MIZUNO Yoshinori 徳島大学, 大学院・ソシオテクノサイエンス研究部, 准教授 (30546388)
|
Project Period (FY) |
2011 – 2012
|
Project Status |
Completed (Fiscal Year 2012)
|
Budget Amount *help |
¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
Fiscal Year 2012: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2011: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
|
Keywords | アイゼンシュタイン級数 / ケッヒャー・マース級数 / フーリエ係数 / 類数 / L関数の特殊値 / ディリクレ級数 / 逆定理 / p 進アイゼンシュタイン級数 / モジュラー形式 / L関数の特殊値 |
Research Abstract |
We study several Dirichlet series associated to modular forms of degree one or two. First, we discovered a new application of Koecher-Maass series of Siegel modular forms. Namely we got a new proof of recent result of Kohnen and Martin on a characterization of degree 2 Siegel cusp forms by the growth of their Fourier coefficients. Our main tools are Koecher-Maass series. Second, we gave some new construction of holomorphic kernel functions of modular L-functions. Using this, we can compute special L-values numericallyrather easily .
|
Report
(3 results)
Research Products
(25 results)