• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

A study on knots and transverse knots using braid theory and Floer theory

Research Project

Project/Area Number 23740053
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Geometry
Research InstitutionYamagata University

Principal Investigator

MATSUDA Hiroshi  山形大学, 理学部, 准教授 (70372703)

Project Period (FY) 2011 – 2013
Project Status Completed (Fiscal Year 2013)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2013: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2012: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2011: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Keywords横断的結び目 / 組み紐 / フレアーホモロジー群 / 2橋指数
Research Abstract

I constructed an example of a pair of closed 4-braids with the following properties; (1) they are related by a Hopf-flype, (2) they are distinct as transverse knots, (3) they have the same self-linking number. I also constructed a similar example of a pair of a closed 3-braid and a closed 7-braid. I determined 2-bridge numbers of torus knots of type (p, q), where p and q are integers. I also determined 2-bridge numbers of knots that had alternating diagrams of closed braids. An invariant of a mapping class group of a surface (fixing its boundary) is defined in bordered Floer theory. When a surface has one boundary component and is of genus 2, I calculated this invariant for elements in Torelli group. Torelli group is a subgroup of a mapping class group of a surface that acts trivially on its first homology group.

Report

(4 results)
  • 2013 Annual Research Report   Final Research Report ( PDF )
  • 2012 Research-status Report
  • 2011 Research-status Report
  • Research Products

    (7 results)

All 2013 2012 2011 Other

All Journal Article (2 results) (of which Peer Reviewed: 2 results) Presentation (2 results) Remarks (3 results)

  • [Journal Article] 2-bridge numbers of torus knots2013

    • Author(s)
      Matsuda Hiroshi
    • Journal Title

      Journal of Knot Theory and Its Ramifications

      Volume: 22巻 Issue: 01 Pages: 1250134-1250134

    • DOI

      10.1142/s0218216512501349

    • Related Report
      2013 Final Research Report 2012 Research-status Report
    • Peer Reviewed
  • [Journal Article] A construction of transversely non-simple knot types2012

    • Author(s)
      Matsuda Hiroshi
    • Journal Title

      Journal of Knot Theory and Its Ramifications

      Volume: 21巻 Issue: 11 Pages: 1250108-1250108

    • DOI

      10.1142/s0218216512501088

    • Related Report
      2013 Final Research Report 2012 Research-status Report
    • Peer Reviewed
  • [Presentation] 2-bridge numbers of torus knots2011

    • Author(s)
      松田浩
    • Organizer
      東北結び目セミナー2011
    • Place of Presentation
      東北大学金属材料研究所
    • Year and Date
      2011-10-14
    • Related Report
      2013 Final Research Report
  • [Presentation] 2-bridge numbers of torus knots2011

    • Author(s)
      松田 浩
    • Organizer
      東北結び目セミナー
    • Place of Presentation
      東北大学金属材料研究所講堂
    • Related Report
      2011 Research-status Report
  • [Remarks] アウトリーチ活動:2012年度山形大学理学部トワイライト開放講座「数学者が五目並べで遊ぶと…全て想定内」2012年6月29日

    • Related Report
      2013 Final Research Report
  • [Remarks] アウトリーチ活動:2013年度山形大学オープンキャンパス体験授業「Google検索結果の順位付け」2013年8月3日

    • Related Report
      2013 Final Research Report
  • [Remarks] アウトリーチ活動:2013年度山形大学理学部トワイライト開放講座「全てを想定する」2013年11月8日

    • Related Report
      2013 Final Research Report

URL: 

Published: 2011-08-05   Modified: 2019-07-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi