• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

The construction of the infinite ergodic theory and the application to metric number theory

Research Project

Project/Area Number 23740088
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field General mathematics (including Probability theory/Statistical mathematics)
Research InstitutionJapan Women's University

Principal Investigator

NATSUI Rie  日本女子大学, 理学部, 准教授 (60398633)

Project Period (FY) 2011-04-28 – 2015-03-31
Project Status Completed (Fiscal Year 2014)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2014: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2013: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2012: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2011: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Keywordsエルゴード理論 / 測度論的数論 / ユークリッドアルゴリズム / 連分数変換 / 国際情報交換 / フランス / 韓国
Outline of Final Research Achievements

Toward a construction of a general system for the measurable dynamical system with the infinite invariant measure, this research tried to find the new interpretation about the randomness of number from the point of view of the ergodic theory. In particular, this research obtained some results for the complexity of number about number theoretic transformations, for example Euclidean algorithm in the positive characteristic theory, Farey maps on the Bruhat-Tits tree, and α-continued fraction transformations on a real number field, as the concrete research model.

Report

(5 results)
  • 2014 Annual Research Report   Final Research Report ( PDF )
  • 2013 Research-status Report
  • 2012 Research-status Report
  • 2011 Research-status Report
  • Research Products

    (7 results)

All 2014 2013 Other

All Journal Article (4 results) (of which Peer Reviewed: 4 results,  Acknowledgement Compliant: 2 results) Presentation (3 results)

  • [Journal Article] Farey Maps, Diophantine Approximation and Bruhat-Tits tree2014

    • Author(s)
      Dong Han Kim, Seonhee Lim, Hitoshi Nakada, and Rie Natsui
    • Journal Title

      Finite Fields and Their Applications

      Volume: 30 Pages: 14-32

    • DOI

      10.1016/j.ffa.2014.05.007

    • Related Report
      2014 Annual Research Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Journal Article] On the equivalence relations of α-continued fractions2014

    • Author(s)
      Hitoshi Nakada, Rie Natsui
    • Journal Title

      Indagationes Mathematicae

      Volume: 25 Issue: 4 Pages: 800-815

    • DOI

      10.1016/j.indag.2014.02.006

    • Related Report
      2014 Annual Research Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Journal Article] Fine costs for Euclid’s algorithm on polynomials and Farey maps2014

    • Author(s)
      Valerie Berthe, Hitoshi Nakada, Rie Natsui, Brigitte Vallee
    • Journal Title

      Advances in Applied Mathematics

      Volume: 54 Pages: 27-65

    • DOI

      10.1016/j.aam.2013.11.001

    • Related Report
      2013 Research-status Report
    • Peer Reviewed
  • [Journal Article] A refined Kurzweil type theorem in positive characteristic2013

    • Author(s)
      Dong Han Kim, Hitoshi Nakada, Rie Natsuic
    • Journal Title

      Finite Fields and Their Applications

      Volume: 20 Pages: 64-75

    • DOI

      10.1016/j.ffa.2012.12.002

    • Related Report
      2012 Research-status Report
    • Peer Reviewed
  • [Presentation] The equivalence relations of α-continued fraction

    • Author(s)
      Rie Natsui
    • Organizer
      Measurable and Topological Dynamical Systems, Keio 2013
    • Place of Presentation
      慶應義塾大学
    • Related Report
      2013 Research-status Report
  • [Presentation] On the existence of the Legendre constant for $\alpha$ continued fractions

    • Author(s)
      Rie Natsui
    • Organizer
      Ergodic Theory and Metric Number Theory
    • Place of Presentation
      日本女子大学
    • Related Report
      2012 Research-status Report
  • [Presentation] Bit complexity of some Euclidean type algorithms

    • Author(s)
      夏井利恵
    • Organizer
      エルゴード理論とその周辺
    • Place of Presentation
      大阪大学
    • Related Report
      2011 Research-status Report

URL: 

Published: 2011-08-05   Modified: 2019-07-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi