• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Drinfeld保型形式の傾斜に関するP進的手法の推進

Research Project

Project/Area Number 23K03078
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 11010:Algebra-related
Research InstitutionTokyo City University

Principal Investigator

服部 新  東京都市大学, 理工学部, 准教授 (10451436)

Project Period (FY) 2023-04-01 – 2026-03-31
Project Status Granted (Fiscal Year 2023)
Budget Amount *help
¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2025: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2024: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2023: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
KeywordsDrinfeld保型形式 / 傾斜 / 数値計算 / 合同
Outline of Research at the Start

Drinfeld保型形式とは,楕円保型形式の正標数一変数関数体における類似である.
この10年間に,複数の研究者による数値計算の蓄積があり,Drinfeld保型形式の傾斜と呼ばれる不変量に関して,由来が謎に包まれた様々な現象が観察されてきた.ところが,楕円保型形式で成功した多くの研究手法がDrinfeld保型形式では破綻し,これらの現象を理論的に解明することができていない.
本研究では,数論幾何・関数解析からのP進的手法の導入を推し進め,これらの現象の中で謎の多い,有限傾斜の上限,傾斜∞部分の次元,傾斜0部分の構造,の三点を明らかにする.

Outline of Annual Research Achievements

本年度はDrinfeld保型形式の傾斜についてどのような現象が起こっているかをまず把握するために,Hecke作用や傾斜に関する数値計算を主に行った.これまで数値計算に用いていた手法は調和コサイクルを用いたBandini-Valentinoの方法だが,この方法では高次の素点に対するHecke作用の明示的公式を得るのは難しい.本年度の研究では,Bandini,Valentino両氏との研究打合せにより,レベルΓ1(t)のDrinfeld尖点形式の具体的な基底とそのq展開を利用することで,任意のHecke作用を計算できるアルゴリズムを開発した.また,Bandini-Valentinoの方法をより一般のレベルのt進傾斜も計算できるようにやや一般化した.
Drinfeld尖点形式の空間に現れるレベルを割る素点でのHecke作用は,有限な傾斜がk-1以下であると予想されている(傾斜の上限予想).以前の計算ではレベルΓ1(t)のt進傾斜についてこの上限予想が成り立ちそうだということが観察できていたが,本研究による数値計算で,これがより一般のレベルでも成立していそうだと分かった.
本研究では初年度に重点的に数値計算を行い,それに基づいて二年度目以降で理論的な研究に力点を移す計画である.本年度においては,傾斜の上限予想についてはBoeckleのHeckeクリスタルを用いた理論的研究も行ったが,上限予想の解決には至らなかった.
また,以前に得ていたDrinfeld-Stuhler曲線を用いたHasse原理の反例について,証明の最終段階は数値計算によるが,そのアルゴリズムを改良することによりさらに多くの反例を得ることができた.これに関しては論文を作成中である.

Current Status of Research Progress
Current Status of Research Progress

3: Progress in research has been slightly delayed.

Reason

傾斜の上限予想について,BoeckleのHeckeクリスタルの分析からこの予想が従うものと考えていたが,Drinfeld保型形式に伴うGalois表現が重さの情報を失っているという事実に起因する困難があり,予定していたほど理論的研究が進まなかった.

Strategy for Future Research Activity

傾斜の上限予想に関して,BoeckleのHeckeクリスタルを用いた研究と並行して,Drinfeld加群の自己双対性を用いた幾何的な手法も検討し,局面打開を図る.

Report

(1 results)
  • 2023 Research-status Report
  • Research Products

    (4 results)

All 2023 Other

All Int'l Joint Research (2 results) Presentation (1 results) (of which Int'l Joint Research: 1 results,  Invited: 1 results) Remarks (1 results)

  • [Int'l Joint Research] Penn State University(米国)

    • Related Report
      2023 Research-status Report
  • [Int'l Joint Research] Middle East Technical University(トルコ)

    • Related Report
      2023 Research-status Report
  • [Presentation] Triviality of the Hecke action on ordinary Drinfeld cuspforms of level Γ1(t^n)2023

    • Author(s)
      Shin Hattori
    • Organizer
      Number Theory Seminar
    • Related Report
      2023 Research-status Report
    • Int'l Joint Research / Invited
  • [Remarks] Shin Hattori's webpage

    • URL

      https://www.comm.tcu.ac.jp/shinh/

    • Related Report
      2023 Research-status Report

URL: 

Published: 2023-04-13   Modified: 2024-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi