• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

グラフ上微分方程式解析

Research Project

Project/Area Number 23K03128
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 12010:Basic analysis-related
Research InstitutionShinshu University

Principal Investigator

Trushin Igor  信州大学, 学術研究院理学系, 教授 (80600337)

Co-Investigator(Kenkyū-buntansha) 望月 清  東京都立大学, 理学研究科, 客員教授 (80026773)
Project Period (FY) 2023-04-01 – 2026-03-31
Project Status Granted (Fiscal Year 2023)
Budget Amount *help
¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2025: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2024: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2023: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
KeywordsInverse problem / Limiting amplitude / Quantum graph / 逆問題
Outline of Research at the Start

I am interested in inverse spectral and scattering problems on metric graphs: it is supposed that spectral or
scattering data are given and we identify properties of differential operators on metric graphs.

Outline of Annual Research Achievements

We investigated the multiplicity of eigenvalues of a sun-type quantum graphs.
Also we consider the dissipative wave propagation problem on an infinite star graph. Results obtained are summarized soon and will be submitted to publish.
Also we investigated an inverse problem for elliptic operator in 3 dimensional domain via single measurement

Current Status of Research Progress
Current Status of Research Progress

2: Research has progressed on the whole more than it was originally planned.

Reason

Research is generally going according to schedule.

Strategy for Future Research Activity

We hope to extend our results to the problem on more general infinite graphs. For this purpose we need to develop more precise and delicate estimates for spectral and scattering problems on these graphs.

Report

(1 results)
  • 2023 Research-status Report
  • Research Products

    (4 results)

All 2024 2023

All Presentation (4 results) (of which Invited: 4 results)

  • [Presentation] 無限グラフ上の波動方程式に対する極限振幅の原理2024

    • Author(s)
      望月清
    • Organizer
      松山キャンプin山口、山口大学
    • Related Report
      2023 Research-status Report
    • Invited
  • [Presentation] 無限グラフ上の波動伝播問題の解の挙動について2024

    • Author(s)
      望月清
    • Organizer
      北九州地区における偏微分方程式研究集会
    • Related Report
      2023 Research-status Report
    • Invited
  • [Presentation] 星状グラフ上の波動伝播問題の極限振幅原理2023

    • Author(s)
      望月清
    • Organizer
      作用素論夏のシンポジウム、愛媛大学
    • Related Report
      2023 Research-status Report
    • Invited
  • [Presentation] グラフ上散乱理論について2023

    • Author(s)
      トルシン イゴール
    • Organizer
      解析学研究セミナー、都立産業技術高等専門学校
    • Related Report
      2023 Research-status Report
    • Invited

URL: 

Published: 2023-04-13   Modified: 2024-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi