• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

ゲージ対称性を明白に保つ厳密くりこみ群の構築とその応用

Research Project

Project/Area Number 23K03418
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 15010:Theoretical studies related to particle-, nuclear-, cosmic ray and astro-physics
Research InstitutionKyushu University

Principal Investigator

鈴木 博  九州大学, 理学研究院, 教授 (90250977)

Project Period (FY) 2023-04-01 – 2028-03-31
Project Status Granted (Fiscal Year 2023)
Budget Amount *help
¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2027: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2026: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2025: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2024: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2023: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Keywords厳密繰り込み群 / 一般化された対称性 / 厳密くりこみ群 / ゲージ対称性 / グラディエントフロー
Outline of Research at the Start

物理理論において、スケール変化のもとでの相互作用の応答を記述する枠組みが、厳密くりこみ群である。この枠組みは、連続時空での場の量子論の定式化の基礎を与える意味で極めて重要である。しかしながら、通常の厳密くりこみ群は素粒子物理学において基本的なゲージ対称性を明白に保つことができない。本研究では、厳密くりこみ群におけるゲージ対称性の問題に独自のアイデア(グラディエントフロー厳密くりこみ群)を適用し、ゲージ対称性を明白に保つ厳密くりこみ群を構築する。さらに、この定式化の応用として、ゲージ理論・重力理論における非摂動的くりこみ群固定点をゲージ対称性を保って解析し、それに基いた素粒子模型の構築を目指す。

Outline of Annual Research Achievements

当該年度は、大きく分けて、我々が定式化したゲージ対称性を明白に保つ厳密くりこみ群(GFERG)の応用、および一般化された対称性に関連した概念の格子正則化での実現の研究を行った。前者については、まず、カイラルアノマリーのGFERGでの特徴づけを考え、それが一般に厳密くりこみ群における複合演算子(composite operator)になっていることを示した。これは、カイラルアノマリーが厳密くりこみ群変換のもとできれいな変換性を示すことを意味しており、近年盛んに議論されている't Hooftアノマリーのくりこみ群不変性に対応していると考えられる。さらに、GFERGの非摂動論的な応用として、U(1)ゲージ化された南部-Jona-Lasinio模型にGFERGを適用し、そのくりこみ群の流れ、特に固定点の存在とその周りでのスケール次元を解析した。これは、電磁相互作用の結合定数については摂動的な扱いだが、従来の研究に比較してゲージ対称性を保った計算であることの確かな優位性を見ることができる。この結果については、今後発表予定である。後者の研究では、1-form対称性のゲージ場('t Hooftフラックス)が存在する場合の分数トポロジカル電荷の格子ゲージ理論での定式化の研究、't Hooft lineを格子上で定義するための「穴開け法」(excision method)の研究、フェルミオンから来るU(1)カイラルアノマリーに付随した非可逆対称性演算子のU(1)格子ゲージ理論での構成などの研究を行なった。最後の研究に関連して、ごく最近、非可逆対称性演算子が't Hooft lineにどのように作用するかを、格子ゲージ理論(modified Villain formalism)に基づいて詳細に解析した。その結果、従来議論されていたのとは異なり、全く作用を及ぼさないという注目すべき結果を得た。

Current Status of Research Progress
Current Status of Research Progress

2: Research has progressed on the whole more than it was originally planned.

Reason

上で述べたように、かなり多くの題材に関して、新しい知見を得ることができたため。

Strategy for Future Research Activity

上で述べたように、GFERGの非摂動論的な応用としてU(1)ゲージ化された南部-Jona-Lasinio模型への適用を考えたが、従来の研究と比較して、我々の取り扱いは4 Fermi相互作用の種類が一つ少ないものであることが分かっている。今後この点を改良した計算を進め、ゲージ対称性を保った厳密くりこみ群の優位性を示した論文を発表したい。また、GFERGはゲージ対称性を明白に保つ厳密くりこみ群として提唱したものだが、具体的な摂動計算を行うと、ゲージ固定がない場合には定式化が発散を含んでいるように思われる。もしこれが本当だとすると、ゲージ固定、さらにはFaddeev-Popovゴーストの導入が予期され、他方厳密くりこみ群はBRST対称性を明白に保つことが困難であるため、GFERGの優位性が大きく損なわれると予想される。このゲージ固定の必然性の問題を明確にすると同時に、ゲージ固定は必要だがFaddeev-Popovゴーストが必要ないとされる確率過程量子化での機構の理解とそのGFERGへの応用の可能性を探りたい。一方、一般化された対称性に関連した概念の格子ゲージ理論での実現に関連しては、U(1)カイラルアノマリーに付随した非可逆対称性演算子の構成を、非可換ゲージ理論の場合にも拡張する。これは、QCDのフレーバーnon-singlet axialカレントのアノマリーに付随した非可逆対称性演算子を構成することになり、Adler-Bardeen定理などとの関係で興味深いと考えている。また、adjointフェルミオンの指数がなぜ1-form対称性のゲージ場('t Hooftフラックス)の存在をdetectできるのかを明確にする計算、また、格子ゲージ理論で構成するカイラルアノマリーに付随した非可逆対称性演算子の物理的な問題、特に't Hooft lineが関与する問題、への応用を考察したい。

Report

(1 results)
  • 2023 Research-status Report
  • Research Products

    (7 results)

All 2024 2023

All Journal Article (4 results) (of which Peer Reviewed: 4 results,  Open Access: 4 results) Presentation (3 results) (of which Int'l Joint Research: 1 results,  Invited: 3 results)

  • [Journal Article] Lattice Realization of the Axial <i>U</i>(1) Noninvertible Symmetry2024

    • Author(s)
      Honda Yamato、Morikawa Okuto、Onoda Soma、Suzuki Hiroshi
    • Journal Title

      Progress of Theoretical and Experimental Physics

      Volume: 2024 Issue: 4

    • DOI

      10.1093/ptep/ptae040

    • Related Report
      2023 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Topology of SU(N) lattice gauge theories coupled with ?N 2-form gauge fields2023

    • Author(s)
      Abe Motokazu、Morikawa Okuto、Onoda Soma、Suzuki Hiroshi、Tanizaki Yuya
    • Journal Title

      Journal of High Energy Physics

      Volume: 2023 Issue: 8 Pages: 118-118

    • DOI

      10.1007/jhep08(2023)118

    • Related Report
      2023 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Chiral anomaly as a composite operator in the gradient flow exact renormalization group formalism2023

    • Author(s)
      Miyakawa Yuki、Sonoda Hidenori、Suzuki Hiroshi
    • Journal Title

      Progress of Theoretical and Experimental Physics

      Volume: 2023 Issue: 6

    • DOI

      10.1093/ptep/ptad074

    • Related Report
      2023 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Magnetic operators in 2D compact scalar field theories on the lattice2023

    • Author(s)
      Abe Motokazu、Morikawa Okuto、Onoda Soma、Suzuki Hiroshi、Tanizaki Yuya
    • Journal Title

      Progress of Theoretical and Experimental Physics

      Volume: 2023 Issue: 7

    • DOI

      10.1093/ptep/ptad078

    • Related Report
      2023 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] 藤原さんと格子上のカイラルアノマリー2024

    • Author(s)
      鈴木博
    • Organizer
      茨大素粒子 Mini Workshop、
    • Related Report
      2023 Research-status Report
    • Invited
  • [Presentation] Lattice realization of the axial U(1) non-invertible symmetry2024

    • Author(s)
      鈴木博
    • Organizer
      駒場研究会 場の理論への非摂動的アプローチ
    • Related Report
      2023 Research-status Report
    • Invited
  • [Presentation] Gradient flow exact renormalization group: Illustration in the gauged NJL model2023

    • Author(s)
      Hiroshi Suzuki
    • Organizer
      KEK Theory Workshop 2023
    • Related Report
      2023 Research-status Report
    • Int'l Joint Research / Invited

URL: 

Published: 2023-04-13   Modified: 2024-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi