• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Application of perfect sampling with SAT/SMT solvers

Research Project

Project/Area Number 23K10998
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 60020:Mathematical informatics-related
Research InstitutionHiroshima University

Principal Investigator

岡村 寛之  広島大学, 先進理工系科学研究科(工), 教授 (10311812)

Project Period (FY) 2023-04-01 – 2026-03-31
Project Status Granted (Fiscal Year 2023)
Budget Amount *help
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2025: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2024: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2023: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Keywordsシミュレーション / パーフェクトサンプリング / ペトリネットモデル / SAT/SMTソルバ / MtMDD / 確率モデリング / マルコフ連鎖 / モデル検証
Outline of Research at the Start

本研究はSAT/SMTソルバによるパーフェクトサンプリング手法の実用化を行う.パーフェクトサンプリングとはマルコフ連鎖の定常解に従うサンプルを厳密にサンプリングする手法であり,数理的には無限時間のシミュレーションを有限時間で実行することに対応する.これはモデルの検証・評価において非常に強力な性質となる.SAT/SMTソルバを用いたパーフェクトサンプリング手法は超多状態システムに対しても適用できる手法であるが,実行速度や検証可能なモデルの制限なの問題点がある.本研究では,SAT/SMTソルバに与える式の簡略化と,準定常解と呼ばれる一般的な解を利用した拡張によりこれらの問題点の解決を目指す.

Outline of Annual Research Achievements

令和5年度はサンプリング手法の効率化を行った.これまでの研究成果から,SAT/SMTに与える制約式を減らすこと(制約式の簡略化)により大幅なサンプリング時間の短縮が実現できていたが,制約式の簡略化のもう一つの効果として,上下限を求める式が短くなるため,総当たり的な手法によりSAT/SMT問題を解くよりも速く解が得られる可能性が考えられた.そこで,簡略化された制約式を使った上下限問題の解集合をあらかじめMtMDD (Multi-Terminal Multi-path Decision Diagram) と呼ばれるコンパクトな表現を用いて,事前に解くことで高速化を図った.MtMDD は多値関数を木によって表現する手法であり,関数内の共通部分を共有化することで多くの組み合わせを持つ入力に対する出力をコンパクトに表現できる.MtMDDは各トランジション毎に作成する必要があるが,一度作成すると,サンプリングを通じて変更することなく利用できるため,解を得るために非常に効率が良い.さらに,簡略化された問題に対しては一つのトランジションあたり,概ね10個程度のノードで問題の解集合を表現できる.解はMtMDDに対する深さ優先探索で簡単に得ることができる.結果として,令和4年度の成果と比較して,最大 100倍程度の高速化が実現できた.これにより,10の200乗状態のモデルに対するパーフェクトサンプリングが 1 秒以内で実施することができ,十分実用に耐え得る速度が実現できた.一方で,MtMDD表現を用いることにより,サンプリング速度が悪化するモデルも存在したため,今後はそのようなモデルに対する効率的なアプローチを模索する.

Current Status of Research Progress
Current Status of Research Progress

2: Research has progressed on the whole more than it was originally planned.

Reason

計画では令和5年度は吸収状態を持つモデルに対する扱いを行い,令和6年度にサンプリングの改良を行う予定であったが,令和5年度にサンプリングの改良を実施し,十分な成果が得られた.令和6年度以降で,吸収状態の扱い等の実用化における諸問題を扱っていく予定としている.

Strategy for Future Research Activity

令和6年度以降は,課題として残っている MtMDD による高速化ができないモデルの扱い,吸収状態を持つモデルに対する準定常解を求めるパーフェクトサンプリング,状態縮約の応用を行う予定としている.特に MtMDD による高速化ができないモデルの原因として,Pインバリアントによる制約式が関係していることがわかっている.具体的には,一つの制約式が多くの変数を含む場合に MtMDD が肥大化し,それが高速化を阻害する原因というところまで解明できている.そのため,線形計画法におけるスラック変数のような冗長な変数を導入することで,MtMDDの肥大化を抑える方法について検討する.

Report

(1 results)
  • 2023 Research-status Report
  • Research Products

    (3 results)

All 2024 2023

All Journal Article (2 results) (of which Peer Reviewed: 2 results) Presentation (1 results)

  • [Journal Article] Optimal test case generation for boundary value analysis2024

    • Author(s)
      Guo Xiujing、Okamura Hiroyuki、Dohi Tadashi
    • Journal Title

      Software Quality Journal

      Volume: Early access Issue: 2 Pages: 543-566

    • DOI

      10.1007/s11219-023-09659-9

    • Related Report
      2023 Research-status Report
    • Peer Reviewed
  • [Journal Article] Hierarchical Dependability Modeling with Multi-State Systems2023

    • Author(s)
      Zheng Junjun、Okamura Hiroyuki、Dohi Tadashi
    • Journal Title

      Proc. IEEE Pacific Rim International Symposium on Dependable Computing

      Volume: - Pages: 268-277

    • DOI

      10.1109/prdc59308.2023.00043

    • Related Report
      2023 Research-status Report
    • Peer Reviewed
  • [Presentation] 確率ペトリネットに対するパーフェクトサンプリングの高速化2024

    • Author(s)
      岡村寛之
    • Organizer
      2023年度待ち行列シンポジウム
    • Related Report
      2023 Research-status Report

URL: 

Published: 2023-04-13   Modified: 2024-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi