• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

4階分散項を持つ非線形分散型方程式に対する凝集コンパクト性による解析

Research Project

Project/Area Number 23K13003
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 12020:Mathematical analysis-related
Research InstitutionChukyo University

Principal Investigator

駒田 洸一  中京大学, 工学部, 特任助教 (20967426)

Project Period (FY) 2023-04-01 – 2028-03-31
Project Status Granted (Fiscal Year 2023)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2027: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2026: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2025: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2024: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2023: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Keywords非線形分散型方程式 / 4階シュレディンガー方程式 / 解の時間挙動の分類 / 凝集コンパクト性 / プロファイル分解 / 偶対称性 / 群対称性 / 非線形シュレディンガー方程式 / 解の時間大域挙動 / 散乱問題
Outline of Research at the Start

非線形分散型方程式は波動現象を記述する偏微分方程式のクラスであり, 波を拡げる「分散性」と波を集める「非線形性」という相反する性質のバランスによって様々な解の挙動が現れる. 本研究では, 4階の分散項を持つ非線形分散型方程式に対する解の時間挙動の分類に関する研究を行う. より具体的な研究目標としては, 非線形4階シュレディンガー方程式, 非等方な4階の分散項を持つ非線形シュレディンガー方程式, 量子ザハロフ系に対して, それぞれ解の時間挙動の分類を与えることを考える.

Outline of Annual Research Achievements

2023年度では, 4階の分散項を持つ非線形シュレディンガー方程式 (4NLS) に対して, 基底状態の下での解の時間挙動の分類について研究を行なった. 先行研究では空間2次元以上での4NLSの球対称解に対して時間挙動の分類が得られている. 通常の非線形シュレディンガー方程式 (NLS) に対しては, 方程式のガリレイ不変性を用いることで球対称性の制限なしに解の時間挙動の分類が得られているが, 4NLSではガリレイ不変性がないため球対称性の条件を取り除くことが難しくなっている. 本研究では球対称性よりも弱い対称性を持つ解として, (i)1次元での偶対称な解, (ii)多次元での群対称な解, (iii)運動量が0の解, に対する時間挙動の分類の研究を行なった. 非線形分散型方程式に対する解の時間挙動の分類では, 解が散乱するかしないかのエネルギーの閾値を得ることに問題が帰着される. 2023年度の研究結果としては, (i)や(ii)に対する閾値がある仮定を満たす場合では, その閾値が基底状態以上となることを証明した (眞崎聡氏との共同研究). 証明では偶関数や群対称な関数に対するプロファイル分解も整備した. これらの得られた結果については論文にまとめ投稿中である. (iii)については, 背理法のターゲットである運動量が0の最小爆発解が存在しないことは証明することができたが, 運動量が0の最小爆発解を構成することができていない.

Current Status of Research Progress
Current Status of Research Progress

3: Progress in research has been slightly delayed.

Reason

2023年度の研究では, 4階非線形シュレディンガー方程式に対する解の時間挙動の分類において, 球対称性の条件を緩和することを目的に研究を行なった. 分類理論におけるエネルギーの閾値が基底状態以上となることの証明を試みたが, 証明の鍵となる最小爆発解の構成が上手く出来ず, 結果として閾値に関する追加の仮定が必要となった. この仮定を取り除くことを考えたが, 現状ではまだ出来ていない.

Strategy for Future Research Activity

今後は, 非線形4階シュレディンガー方程式に対する解の時間挙動の分類において球対称性の制限を緩和する研究を引き続き行うとともに, 2023年度の研究では扱っていなかった非線形項がエネルギー臨界や質量臨界の場合についても研究を行う. 4階シュレディンガー方程式では, 非線形項が解の時間挙動の分類が比較的簡単である斥力的な場合でも未解決な部分がある. そこで, これらの未解決部分の問題点を整理して解決方法について検討する.

Report

(1 results)
  • 2023 Research-status Report
  • Research Products

    (5 results)

All 2024 2023

All Journal Article (1 results) (of which Peer Reviewed: 1 results) Presentation (4 results) (of which Invited: 3 results)

  • [Journal Article] Existence of radially symmetric blow-up solutions for quantum Zakharov system2024

    • Author(s)
      Komada Koichi
    • Journal Title

      Journal of Differential Equations

      Volume: 397 Pages: 1-33

    • DOI

      10.1016/j.jde.2024.02.044

    • Related Report
      2023 Research-status Report
    • Peer Reviewed
  • [Presentation] 空間1次元における4階非線形シュレディンガー方程式に対する散乱問題2023

    • Author(s)
      駒田 洸一, 眞崎 聡
    • Organizer
      日本数学会2023年度秋季総合分科会
    • Related Report
      2023 Research-status Report
  • [Presentation] 非線形4階シュレディンガー方程式に対する群対称な解の散乱2023

    • Author(s)
      駒田 洸一
    • Organizer
      東北大学応用数理解析セミナー
    • Related Report
      2023 Research-status Report
    • Invited
  • [Presentation] 非線形4階シュレディンガー方程式に対する群対称な解の散乱2023

    • Author(s)
      駒田 洸一
    • Organizer
      第190回神楽坂解析セミナー
    • Related Report
      2023 Research-status Report
    • Invited
  • [Presentation] Scattering of solutions with zero-momentum for the nonlinear fourth-order Schrodinger equation2023

    • Author(s)
      駒田 洸一
    • Organizer
      One-day workshop on nonlinear dispersive equations
    • Related Report
      2023 Research-status Report
    • Invited

URL: 

Published: 2023-04-13   Modified: 2024-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi