• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

最適制御問題の数値解析におけるミクロな粒子系の有用性の解明

Research Project

Project/Area Number 23K19017
Research Category

Grant-in-Aid for Research Activity Start-up

Allocation TypeMulti-year Fund
Review Section 0201:Algebra, geometry, analysis, applied mathematics,and related fields
Research InstitutionWaseda University

Principal Investigator

渡辺 樹  早稲田大学, 理工学術院, 助教 (70979616)

Project Period (FY) 2023-08-31 – 2025-03-31
Project Status Granted (Fiscal Year 2023)
Budget Amount *help
¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
Fiscal Year 2024: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2023: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Keywords確率制御 / 流体極限 / ハミルトン・ヤコビ・ベルマン方程式 / 粘性解
Outline of Research at the Start

最適制御問題では、モノ (人や粒子など) の動きを制御することで、価値関数と呼ばれる評価関数の最大 (最小) の実現を目指す。よく知られている手法として、価値関数を偏微分方程式の解として特徴付ける方法があるが、非線形性や境界条件などの方程式の複雑さから現実の問題に対してどの程度有効かを数値解析的に検討することは当分野の研究における一つの大きな課題である。本研究では、 制御問題の新たな数値解析手法として、粒子系と呼ばれる連続時間確率モデルの有用性を明らかにする。

Outline of Annual Research Achievements

本研究では、最適制御問題の解法の一つであるハミルトン・ヤコビ・ベルマン(HJB)方程式の数値解法として、粒子系と呼ばれる連続時間マルコフ連鎖の有用性を明らかにすることを目指す. これまで行われていた倒産問題などに応用可能な吸収壁をもつモデルに現れるHJB方程式の解析に対して, 本研究では実社会によく現れる生物モデルや待ち行列などの反射壁を持つモデルに対する同様な解析を行うことで, 反射壁をもつ粒子系の制御問題のある種の極限としてノイマン境界値条件付きHJB方程式が導出可能であることを粘性解の理論を用いることで明らかにした. 具体的には反射壁を持つモデルの値関数が満たす差分型のHJB方程式を導出し, 粘性解の安定性解析を行うことで, 値関数の極限がノイマン境界値条件付きHJB方程式の粘性解であることを示した. 本結果は現在, 査読付き国際誌への投稿向けて準備中である.

Current Status of Research Progress
Current Status of Research Progress

2: Research has progressed on the whole more than it was originally planned.

Reason

反射壁の場合は吸収壁における解析とは異なり, 境界での振る舞いを精密に解析する必要があった. そこでテスト関数に修正項を加えることで境界上での解析を内点の場合と同様に扱うという粘性解特有の議論を用いることで, 当初予定していた反射壁をもつ粒子系を用いてノイマン境界条件を持つHJB方程式の近似解析に成功した. これは今後のより複雑な境界条件下での解析にも応用可能なものであることが期待される. 上記の理由から本研究は概ね計画通りに進んでいると言える.

Strategy for Future Research Activity

今後はより複雑な境界条件, 特に非線形ノイマン境界条件を持つHJB方程式の数値解析に取り組む. この方程式は優先権のある待ち行列の制御問題に現れることが示唆されている. これは人の数は負の値を取らないという通常の反射壁に加えて, 優先権を持つ人がいるかどうかで挙動が変わるというもう一つの反射壁を持つと考えることができる. そこでまずはそのようなモデルの連続極限, つまり客数を無限大した時の極限が満たす方程式を明らかにすることを目指す. その後, 粘性解の安定性解析とこれまでの通常の反射壁の場合の知見を基に, 上述のモデルの制御問題の極限として非線形ノイマン境界条件を持つHJB方程式が導出可能であることを明らかにする.

Report

(1 results)
  • 2023 Research-status Report
  • Research Products

    (3 results)

All 2024

All Presentation (3 results) (of which Invited: 2 results)

  • [Presentation] マルコフによるハミルトン・ヤコビ・ベルマン方程式の近似解析2024

    • Author(s)
      渡辺樹
    • Organizer
      待ち行列研究部会
    • Related Report
      2023 Research-status Report
    • Invited
  • [Presentation] マルコフ連鎖を用いた発展方程式の近似解析とその応用2024

    • Author(s)
      渡辺樹
    • Organizer
      第41回非線形発展方程式セミナー@KUE
    • Related Report
      2023 Research-status Report
    • Invited
  • [Presentation] Markov Chain Approximation for Hamilton-Jacobi-Bellman Equation with Reflecting Boundary2024

    • Author(s)
      渡辺樹, 熊谷大雅
    • Organizer
      待ち行列シンポジウム
    • Related Report
      2023 Research-status Report

URL: 

Published: 2023-09-11   Modified: 2024-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi