• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

End-ponit maximal regularity and its application to the Navier-Stokes equations

Research Project

Project/Area Number 23K20804
Project/Area Number (Other) 21H00992 (2021-2023)
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeMulti-year Fund (2024)
Single-year Grants (2021-2023)
Section一般
Review Section Basic Section 12020:Mathematical analysis-related
Research InstitutionKyoto University

Principal Investigator

清水 扇丈  京都大学, 理学研究科, 教授 (50273165)

Project Period (FY) 2021-04-01 – 2025-03-31
Project Status Granted (Fiscal Year 2024)
Budget Amount *help
¥12,610,000 (Direct Cost: ¥9,700,000、Indirect Cost: ¥2,910,000)
Fiscal Year 2024: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Fiscal Year 2023: ¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2022: ¥3,250,000 (Direct Cost: ¥2,500,000、Indirect Cost: ¥750,000)
Fiscal Year 2021: ¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
Keywords函数方程式論 / 調和解析 / 最大正則性 / Navier-Stokes方程式 / 自由境界問題 / 関数方程式 / 関数解析 / Navier-Stokes方程式 / 偏微分方程式 / 微分幾何
Outline of Research at the Start

線形の放物型方程式がもつBanach空間Xにおける最大Lp正則性を用いると,準線形な非線形問題に対し縮小写像の原理を適用して適切性が容易に証明される.1<p<∞でありかつUMD (Unconditional Martingale Differences) なBanach空間Xに対しては一般理論が整備されてきている.本研究課題では, 端点であるp=1のときに,UMDではないBanach空間Xも込めて,どのような形で最大正則性が成立するのかを考察する.そして,線形化問題の時間大域的な最大L1正則性の結果をNavier-Stokes方程式の自由境界問題に応用する.

Outline of Annual Research Achievements

非圧縮性 Navier-Stokes 方程式の半空間からの摂動である自由境界問題に対して, スケール不変空間であるところの時間変数についてL^1空間, 空間変数について斉次 Besov 空間での時間大域的な解の一意存在を, 初期流速が小さい場合に示した. Lagrange 変換を行うことにより, 摂動半空間は半空間となり, 非線形項には流速の空間1階微分の時間積分の項が現れる. 非線形項に対して閉じた評価をするために時間変数についてL^1空間と相性が良い. 線形化問題は, 半空間におけるストレスフリー境界条件を伴う Stokes 方程式となり, この線形問題の端点最大L^1-正則性を解表示に対して凱旋門型 Littlewood-Palay 分解(小川-清水, JEE, 2022)を導入し概直交性を示す我々の手法で証明した. 最大L^1-正則性に基づき非線形問題の解の存在を縮小写像の原理によって証明した. さらに, 初期境界がグラフで与えられていてその高さの小ささは要求しないが傾きが小さい場合に, 非圧縮性 Navier-Stokes 方程式の自由境界問題の時間大域解の一意存在を, 初期流速が小さい場合に証明した. 以上は小川教授との共同研究である.
小薗教授との共同研究で, 3次元全空間における定常Navier--Stokes方程式の解の安定性を解析した. 定常 Navier-Stokes 方程式の解のスケール不変な関数空間でこれまででもっとも広い斉次 Besov 空間(金子-小薗-清水, Indiana U.,2019)の定常解に, 同じ Besov 空間で小さな初期擾乱に対する安定性を時間漸近レートとともに証明した.

Current Status of Research Progress
Current Status of Research Progress

1: Research has progressed more than it was originally planned.

Reason

非圧縮性 Navier-Stokes 方程式の半空間からの摂動である自由境界問題に対して, さらにグラフ型の初期境界を持つ場合に, スケール不変空間であるところの時間変数についてL^1空間, 空間変数について斉次 Besov 空間での時間大域的な解の一意存在を, 初期流速が小さい場合に示すことが本研究の最大の目的であり, それが達成できたため.

Strategy for Future Research Activity

今後は以下の研究の実施を計画している. (1) 圧縮性 Navier-Stokes 方程式の自由境界問題に対する時間L^1-空間, 空間斉次 Besov空間での解の一意存在の証明. 非圧縮性では未知関数は流速と圧力であったが, 圧縮性では未知関数は流速と密度になる. 圧力は楕円型方程式を満たすが, 密度は双曲型方程式を満たすため, Besov空間の低周波部分の詳細な解析が必要となる. (2) 非圧縮性Navier-Stokes方程式の解が最大L_p-正則性のクラスに属するときの初期値と外力に対する整合条件の同定 (3)凖地衡流方程式のスケール不変斉次 Besov 空間における解の一意存在の証明 (4) 3次元 Euclid 空間内の滑らかなコンパクトな曲面を境界に持つ外部領域において, 調和ベクトル場の de Rham-Hodge-Kodaira 型分解定理を応用した Navier-Stokes 方程式の定常解の安定性の証明.

コロナからほぼ平時に戻り, 対面での国際共同研究の好機が訪れている. 9月9日-11日には京都大学にて国際研究集会 "Fluids and Maximal Regularity" を開催する. 最大正則性の創始の一人であるHerbert Amann教授, 本研究の国際共同研究受入代表者のMatthias Hieber教授, 共同研究者のPeer C. Kunstmann教授, Paolo Maremonti教授, Raphael Danchin教授を招聘し講演を依頼し, 共同研究および情報交換を行う.

Report

(2 results)
  • 2022 Annual Research Report
  • 2021 Annual Research Report
  • Research Products

    (23 results)

All 2024 2023 2022 Other

All Int'l Joint Research (2 results) Journal Article (8 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 8 results,  Open Access: 3 results) Presentation (11 results) (of which Int'l Joint Research: 9 results,  Invited: 11 results) Funded Workshop (2 results)

  • [Int'l Joint Research] Karlsruhe工科大学/Darmstadt工科大学(ドイツ)

    • Related Report
      2022 Annual Research Report
  • [Int'l Joint Research] Darmstadt工科大学/Karlsruhe工科大学(ドイツ)

    • Related Report
      2021 Annual Research Report
  • [Journal Article] Free boundary problems of the incompressible Navier--Stokes equations with non-flat initial surface in the critical Besov space2024

    • Author(s)
      Takayoshi Ogawa, Senjo Shimizu
    • Journal Title

      Mathematische Annalen

      Volume: Online Issue: 2 Pages: 3155-3219

    • DOI

      10.1007/s00208-024-02823-x

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Maximal 𝐿<sup>1</sup>-regularity and free boundary problems for the incompressible Navier–Stokes equations in critical spaces2024

    • Author(s)
      Takayoshi Ogawa, Senjo Shimizu
    • Journal Title

      Journal of the Mathematical Society of Japan

      Volume: 76 Issue: 2 Pages: 593-672

    • DOI

      10.2969/jmsj/88288828

    • ISSN
      0025-5645, 1881-1167, 1881-2333
    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Stability of stationary solutions to the Navier-Stokes equations in the Besov space2023

    • Author(s)
      H. Kozono, S. Shimizu
    • Journal Title

      Math. Nachr.

      Volume: to appear Issue: 5 Pages: 1964-1982

    • DOI

      10.1002/mana.202100150

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Analyticity in space-time of solutions to the Navier-Stokes equations via parameter trick based on maximal regularity2023

    • Author(s)
      H. Kozono, P. Kunstmann, S. Shimizu
    • Journal Title

      Annali di Scienze Scuola Normale Superiore

      Volume: to appear Pages: 1673-1716

    • DOI

      10.2422/2036-2145.202109_011

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] 3次元Lrベクトル場に対するHelmholtz-Weyl分解2023

    • Author(s)
      小薗英雄, 清水扇丈, 柳澤卓
    • Journal Title

      数学

      Volume: 75(1)

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Maximal L^1-regularity for parabolic initial-boundary value problems with inhomogeneous data2022

    • Author(s)
      Ogawa Takayoshi、Shimizu Senjo
    • Journal Title

      Journal of Evolution Equations

      Volume: 22 Issue: 2

    • DOI

      10.1007/s00028-022-00778-7

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] A Characterization of harmonic Lr-vector fields in three dimensional exterior domains2022

    • Author(s)
      M. Hieber, H. Kozono, A. Seyfert, S. Shimizu, T. Yanagisawa
    • Journal Title

      J. Geom. Anal.

      Volume: 32 Issue: 7

    • DOI

      10.1007/s12220-022-00938-8

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Maximal regularity for the Cauchy problem of the heat equation?in <i>BMO</i>2022

    • Author(s)
      Ogawa Takayoshi、Shimizu Senjo
    • Journal Title

      Mathematische Nachrichten

      Volume: 295 Issue: 7 Pages: 1406-1442

    • DOI

      10.1002/mana.201900506

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Presentation] Free boundary problems for the incompressible fluids2023

    • Author(s)
      Senjo Shiimzu
    • Organizer
      Inaugural Meeting of Asian-Oceanian Women in Mathematics, ICTS, India (Hybrid) (2023/4/27)
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Free boundary problems of the incompressible Navier-Stokes equations in the critical Besov space2023

    • Author(s)
      Senjo Shiimzu
    • Organizer
      DD23, 90th anniversary of Prof. V.A. Solonnikov, St. Peterburg, Russia (hybrid) (2023/6/8)
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Stability of the equilibria of incompressible two-phase flows with phase transitions2023

    • Author(s)
      Senjo Shiimzu
    • Organizer
      Metrics and Measures, HeKKSaGOn satellite conference, Tohoku University (2023/9/29)
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Free boundary problem on incompressible two-phase flows with phase transitions2023

    • Author(s)
      Senjo Shiimzu
    • Organizer
      Oberwolfach Seminar: Recent topics on the Navier-Stokes equations, Germany (2023/10/22-28)
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Maximal L^1-regularity and its application to free boundary problems of the Navier-Stokes equations2023

    • Author(s)
      Senjo Shiimzu
    • Organizer
      Critical Phenomena in Nonlinear Partial Differential Equations, Harmonic Analysis, and Functional Inequalities, Sendai (2023/11/10)
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Free boundary problems for the Navier-Stokes equations2023

    • Author(s)
      Senjo Shiimzu
    • Organizer
      Mathematics Distinguished Lecture Series 2023, Bandung, Indonesia (hybrid) (2023/12/2)
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Free boundary problems of the Navier-Stokes equations based on maximal L^1-regularity2023

    • Author(s)
      Senjo Shiimzu
    • Organizer
      Recent Topics on the Mathematical Fluid Mechanics, Waseda University (2023/12/8)
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Free boundary problems for the incompressible Navier-Stokes equations in time $L^1$ setting2023

    • Author(s)
      清水扇丈
    • Organizer
      大阪大学数学教室 微分方程式セミナー(2024/1/19)
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] Free boundary problems for the incompressible Navier-Stokes equations in critical spaces2022

    • Author(s)
      Senjo Shiizu
    • Organizer
      Mathematical Advances in Geophysical Fluid Dynamics (2246) Mathematisches Forschungsinstitut Oberwolfach, Germany
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Free boundary problems for the incompressible Navier-Stokes equations in critical spaces2022

    • Author(s)
      Senjo Shimizu
    • Organizer
      広島微分方程式研究会, 広島大学
    • Related Report
      2021 Annual Research Report
    • Invited
  • [Presentation] Free boundary problems for the incompressible Navier-Stokes equations in critical spaces2022

    • Author(s)
      Senjo Shimizu
    • Organizer
      Nonlinear PDEs in Fluid Dynamics, CIRM, France
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research / Invited
  • [Funded Workshop] Analysis, Geometry and Atochastucs on Metric Spaces, RIMS (2023/9/25-27)2023

    • Related Report
      2022 Annual Research Report
  • [Funded Workshop] Metrics and Measures, HeKKSaGOn satellite conference, Tohoku University (2023/9/28-29)2023

    • Related Report
      2022 Annual Research Report

URL: 

Published: 2021-04-28   Modified: 2024-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi