• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Deepening representation theory of orders by tilting theory

Research Project

Project/Area Number 23K22384
Project/Area Number (Other) 22H01113 (2022-2023)
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeMulti-year Fund (2024)
Single-year Grants (2022-2023)
Section一般
Review Section Basic Section 11010:Algebra-related
Research InstitutionThe University of Tokyo

Principal Investigator

伊山 修  東京大学, 大学院数理科学研究科, 教授 (70347532)

Project Period (FY) 2022-04-01 – 2027-03-31
Project Status Granted (Fiscal Year 2024)
Budget Amount *help
¥17,290,000 (Direct Cost: ¥13,300,000、Indirect Cost: ¥3,990,000)
Fiscal Year 2026: ¥3,380,000 (Direct Cost: ¥2,600,000、Indirect Cost: ¥780,000)
Fiscal Year 2025: ¥3,380,000 (Direct Cost: ¥2,600,000、Indirect Cost: ¥780,000)
Fiscal Year 2024: ¥3,380,000 (Direct Cost: ¥2,600,000、Indirect Cost: ¥780,000)
Fiscal Year 2023: ¥3,380,000 (Direct Cost: ¥2,600,000、Indirect Cost: ¥780,000)
Fiscal Year 2022: ¥3,770,000 (Direct Cost: ¥2,900,000、Indirect Cost: ¥870,000)
Keywords導来圏 / 安定性条件 / 団圏 / 特異圏 / Cohen-Macaulay加群 / g-fan / silting object / cluster tilting object / AS Gorenstein代数 / 非可換超曲面 / dg圏 / mixed団傾加群 / Auslander対応 / 準傾対象 / 扇
Outline of Research at the Start

環とは加法、減法、乗法の与えられた集合であり、整数、有理数、実数、複素数などの数体系はもちろん、多項式や行列をはじめ様々な例があり、現代数学を支える重要な基礎概念の一つである。整環は、最も基本的な環のクラスの一つである。体上の有限次元代数およびCohen-Macaulay環と呼ばれる基本的な2つのクラスを共通に一般化したものであり、箙(クイバー)の道代数や有限群の群環をはじめ多くの重要な例がある。本研究計画では傾理論に基づいたアプローチにより、整環の表現論を深化させることを目的とする。

Outline of Annual Research Achievements

上山健太氏, 木村雄太氏と共同(arXiv:2404.05925)で、d次元Artin-Schelter Gorenstein代数AのCohen-Macaulay表現論を調べた。この代数は非可換代数幾何で基本的な対象であり、古典的な(次数付き)Gorenstein整環を含む重要な環のクラスである。このように非可換の状況では、古典的なGorensteinパラメータは、単純加群ごとに定まる整数の組として定義されるが、それらの平均値を平均Gorensteinパラメータと呼ぶ。我々はd=1の場合に、Aの次数付きCohen-Macaulay加群の安定圏に傾対象が存在する(言い換えると、Aの次数付き特異圏が環の導来圏と同値になる)ための必要十分条件が、「Aの平均Gorensteinパラメータが0以下であるか或いはAが正則である」ことを証明した。これは以前の可換Gorenstein環に対するRagnar Buchweitz氏、山浦浩太氏との共同研究の主定理を大きく拡張する成果である。証明の鍵の一つは、次数付き森田同値によりGorensteinパラメータを巧妙に制御することである。また2次の非可換超曲面の場合に、我々の圏同値を制限することによりSmith-Van den Berghの圏同値が得られることを示した。
以前の埴原紀宏氏との共同研究(arXiv:2209.14090)を改良した。次数付きGorenstein環Rと有限次元代数Aに対し、Rが孤立特異点と限らない場合にも、Rの次数付き特異圏とAの導来圏の同値から、Rの特異圏の特定の部分圏とAの団圏の同値が得られることを示した。
以前のAaron Chan氏, Rene Marczinzik氏との共同研究(arXiv:2210.06180)を改良した。特に2種類のmixed団傾加群の構成方法を与えた。
他の研究は省略する。

Current Status of Research Progress
Current Status of Research Progress

2: Research has progressed on the whole more than it was originally planned.

Reason

上山氏、木村氏との共同研究を完成することができた。また埴原氏との共同研究の主定理を、孤立特異点で無い場合に正確に与えることができたことは、大きな進展である。他のいくつかの研究も順調に進展している。

Strategy for Future Research Activity

引き続き, Auslander-Reiten理論, 傾理論, 団傾理論, 非可換特異点解消などに関する諸問題に関して, じっくりと取り組む予定である.

Report

(1 results)
  • 2022 Annual Research Report
  • Research Products

    (29 results)

All 2024 2023 2022 Other

All Int'l Joint Research (6 results) Journal Article (8 results) (of which Int'l Joint Research: 7 results,  Peer Reviewed: 7 results,  Open Access: 3 results) Presentation (9 results) (of which Int'l Joint Research: 5 results,  Invited: 6 results) Book (1 results) Remarks (1 results) Funded Workshop (4 results)

  • [Int'l Joint Research] North Carolina State University(米国)

    • Related Report
      2022 Annual Research Report
  • [Int'l Joint Research] University of Bonn/Universitaet zu Koeln(ドイツ)

    • Related Report
      2022 Annual Research Report
  • [Int'l Joint Research] Universite de Picardie Jules Verne(フランス)

    • Related Report
      2022 Annual Research Report
  • [Int'l Joint Research] Uppsala University/Linkoeping University(スウェーデン)

    • Related Report
      2022 Annual Research Report
  • [Int'l Joint Research] NTNU(ノルウェー)

    • Related Report
      2022 Annual Research Report
  • [Int'l Joint Research]

    • Related Report
      2022 Annual Research Report
  • [Journal Article] Auslander-Reiten theory in extriangulated categories2024

    • Author(s)
      Osamu Iyama, Hiroyuki Nakaoka, Yann Palu
    • Journal Title

      Transactions of the American Mathematical Society, Series B

      Volume: 11 Issue: 8 Pages: 248-305

    • DOI

      10.1090/btran/159

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Classifying subcategories of modules over Noetherian algebras2024

    • Author(s)
      Iyama Osamu、Kimura Yuta
    • Journal Title

      Advances in Mathematics

      Volume: 446 Pages: 109631-109631

    • DOI

      10.1016/j.aim.2024.109631

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Periodic trivial extension algebras and fractionally Calabi-Yau algebras2024

    • Author(s)
      Aaron Chan, Erik Darpoe, Osamu Iyama, Rene Marczinzik
    • Journal Title

      Ann. Sci. Ec. Norm. Super. (4)

      Volume: -

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Triangulations of prisms and preprojective algebras of type A2024

    • Author(s)
      Osamu Iyama, Nathan Williams
    • Journal Title

      Int. Math. Res. Not. IMRN

      Volume: -

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Lattice theory of torsion classes: Beyond Tau-tilting theory2023

    • Author(s)
      Demonet Laurent、Iyama Osamu、Reading Nathan、Reiten Idun、Thomas Hugh
    • Journal Title

      Transactions of the American Mathematical Society, Series B

      Volume: 10 Issue: 18 Pages: 542-612

    • DOI

      10.1090/btran/100

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Representation Theory of Geigle-Lenzing Complete Intersections2023

    • Author(s)
      Herschend Martin、Iyama Osamu、Minamoto Hiroyuki、Oppermann Steffen
    • Journal Title

      Memoirs of the American Mathematical Society

      Volume: 285 Issue: 1412 Pages: 1-141

    • DOI

      10.1090/memo/1412

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Representation theory of quivers and finite-dimensional algebras2023

    • Author(s)
      Claire Amiot, William Crawley-Boevey, Osamu Iyama, Jan Schroer
    • Journal Title

      Oberwolfach Rep.

      Volume: 20

    • Related Report
      2022 Annual Research Report
    • Open Access / Int'l Joint Research
  • [Journal Article] Positive Fuss Catalan Numbers and Simple-Minded Systems in Negative Calabi-Yau Categories2022

    • Author(s)
      Iyama Osamu、Jin Haibo
    • Journal Title

      International Mathematics Research Notices

      Volume: to appear Issue: 8 Pages: 6624-6647

    • DOI

      10.1093/imrn/rnab369

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] Semistable torsion classes and canonical decompositions in Grothendieck groups2024

    • Author(s)
      Osamu Iyama
    • Organizer
      Cluster Algebras and Its Applications, Mathematisches Forschungsinstitut Oberwolfach, Germany
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Tilting theory via g-fans in real Grothendieck groups(概説講演2回)2023

    • Author(s)
      Osamu Iyama
    • Organizer
      Algebraic Lie Theory and Representation Theory 2023, 東京工業大学
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] Singularity categories and cluster categories2023

    • Author(s)
      Osamu Iyama
    • Organizer
      Current trends in categorically approach to algebraic and symplectic geometry 2, IPMU
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Tilting theory via g-fans in real Grothendieck groups2023

    • Author(s)
      Osamu Iyama
    • Organizer
      MSJ-KMS Joint Meeting 2023, Sendai International Center
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 漸化式とグラフと団代数2023

    • Author(s)
      Osamu Iyama
    • Organizer
      高校生と大学生のための金曜特別講座, online
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] Auslander-Reiten理論特論(8回講演)2023

    • Author(s)
      Osamu Iyama
    • Organizer
      online
    • Related Report
      2022 Annual Research Report
  • [Presentation] Tilting theory via g-fans in real Grothendieck groups2023

    • Author(s)
      Osamu Iyama
    • Organizer
      The 44th Japan Symposium on Commutative Algebra, LecTore Hayama
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Representation theory of non-commutative Gorenstein rings in dimension one2023

    • Author(s)
      Osamu Iyama
    • Organizer
      Representation Theory and Non-Commutative Geometry / ARTIG 3, Paderborn University, Germany
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Semistable torsion classes and canonical decompositions in Grothendieck groups(2回講演)2023

    • Author(s)
      Osamu Iyama
    • Organizer
      Seminar on tau-tilting-finiteness and beyond, 名古屋大学
    • Related Report
      2022 Annual Research Report
  • [Book] McKay correspondence, mutation and related topics. Proceedings of the international conference held online July 17--August 14, 20202023

    • Author(s)
      Yukari Ito, Akira Ishii, Osamu Iyama
    • Total Pages
      533
    • Publisher
      Mathematical Society of Japan, Tokyo
    • ISBN
      9784864970983
    • Related Report
      2022 Annual Research Report
  • [Remarks] Osamu Iyama

    • URL

      https://www.ms.u-tokyo.ac.jp/~iyama/index.html

    • Related Report
      2022 Annual Research Report
  • [Funded Workshop] Silting in Representation Theory, Singularities, and Noncommutative Geometry, Casa Matematica Oaxaca (CMO), Mexico2023

    • Related Report
      2022 Annual Research Report
  • [Funded Workshop] McKay correspondence, Tilting theory and related topics, IPMU2023

    • Related Report
      2022 Annual Research Report
  • [Funded Workshop] Representation Theory of Quivers and Finite-Dimensional Algebras, Mathematisches Forschungsinstitut Oberwolfach, Germany2023

    • Related Report
      2022 Annual Research Report
  • [Funded Workshop] Tokyo-Nagoya Algebra Seminar (online)2022

    • Related Report
      2022 Annual Research Report

URL: 

Published: 2022-04-19   Modified: 2024-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi