Elucidation of leukemic stem cell-specific mitochondrial activation mechanisms and establishment of novel therapeutic approach against AML
Project/Area Number |
23K24364
|
Project/Area Number (Other) |
22H03105 (2022-2023)
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Multi-year Fund (2024) Single-year Grants (2022-2023) |
Section | 一般 |
Review Section |
Basic Section 54010:Hematology and medical oncology-related
|
Research Institution | Kyushu University |
Principal Investigator |
菊繁 吉謙 九州大学, 大学病院, 講師 (40619706)
|
Co-Investigator(Kenkyū-buntansha) |
赤司 浩一 九州大学, 医学研究院, 教授 (80380385)
|
Project Period (FY) |
2022-04-01 – 2026-03-31
|
Project Status |
Granted (Fiscal Year 2024)
|
Budget Amount *help |
¥17,160,000 (Direct Cost: ¥13,200,000、Indirect Cost: ¥3,960,000)
Fiscal Year 2025: ¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2024: ¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2023: ¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2022: ¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
|
Keywords | 白血病幹細胞 / ミトコンドリア / TIM-3 / OXPHOS |
Outline of Research at the Start |
白血病幹細胞はヒトAMLにおける腫瘍の本体ともいえる少数の細胞である。白血病幹細胞の代謝特性として、ミトコンドリアにおける酸化的リン酸化に対する依存性が知られている。申請者らはこの白血病幹細胞に特異的なミトコンドリア活性化機構を見出している。その一つの機構として、白血病幹細胞自身が細胞レベルでのユニークなアンモニア解毒機構を有しており、このアンモニア解毒機構とミトコンドリアにおける酸化的リン酸化をカップリングさせることで、酸化的リン酸化を強化していることを本研究の遂行により明らかにする。
|
Outline of Annual Research Achievements |
本研究課題は代表者が同定した白血病幹細胞特異的表面抗原TIM-3分子が制御する代謝特性について解明を行うことを目的とする。先行研究において、網羅的遺伝子発現解析の結果から、TIM-3シグナルの下流においてミトコンドリアの酸化的リン酸化(OXPHOS)制御が生じていることを見出した。さらにその一つの制御メカニズムとして先行研究におけるメタボロームデータ解析から白血病幹細胞において尿素サイクルの活性化が生じることでOXPHOSを制御する可能性を見出している。これは本来、肝臓および小腸上皮でのみ観察されるメカニズムであり、白血病幹細胞が異所性に尿素サイクルとTCAサイクルのカップリング機構を活性化していると考えられる。ヒト白血病幹細胞は細胞特性としてミトコンドリアにおけるOXPHOS活性にエネルギー産生を強く依存していることがこれまでに知られており、その治療応用への重要性も増している。そこで、本研究課題においては、TIM-3シグナルが制御する白血病幹細胞における代謝特性の解明を行い、治療モデルの確立に取り組むことで、現在応用されているTIM-3シグナル遮断によるヒト骨髄系腫瘍に対する治療戦略確立の上で基盤的研究となることを目指す。
|
Current Status of Research Progress |
Current Status of Research Progress
2: Research has progressed on the whole more than it was originally planned.
Reason
尿素サイクルの律速段階酵素であるCPS1を標的とした治療モデルの確立に主として取り組む。具体的にはCPS1阻害剤および、細胞株を用いたCPS1ノックダウン実験を行い、免疫不全マウスへの異種移植系を介してin vivoでの治療モデルの確立に取り組んだ。同時に研究計画書にあるように、OXPHOSを標的とする新規薬剤VenetoclaxとCPS1阻害の相乗効果についてもin vitro, in vivoの実験により詳細に検討を行った。その結果CPS1阻害による抗AML効果をin vitro, in vivoで確認することができた。 2. 15Nで標識したNH3を用いることでIsotope-tracing実験を行い、AML細胞が窒素負荷を効率的に処理するユニークな経路を同定した。これは、想定された尿素サイクルを一部利用しつつ、予想していなかったアミノ酸合成系へのバイパスも利用していることを見出すことができた。ヒトAML細胞が、腫瘍増殖において必要な高窒素レベルを有効利用しつつかつ、その毒性を軽減するためのユニークな分子機構が想定された。
|
Strategy for Future Research Activity |
2023年度は以下の2点について研究を進める。
1. 尿素サイクルの律速段階酵素であるCPS1を標的とした治療モデルの確立に主として取り組む。具体的にはCPS1阻害剤および、細胞株を用いたCPS1ノックダウン実験を行い、免疫不全マウスへの異種移植系を介してin vivoでの治療モデルの確立を引き続き拡充する。これにより、異所性尿素サイクル活性化を標的とした治療戦略の構築を目指す。同時に研究計画書にあるように、OXPHOSを標的とする新規薬剤VenetoclaxとCPS1阻害の相乗効果についてもin vitro, in vivoの実験により詳細に検討を行う。
2.15Nで標識したNH3を用いたIsotope-tracing実験を2022年度に引き続いて行う。2022年度の研究結果から、ヒトAML細胞がNH3処理に尿素サイクルのみならず、アミノ酸合成系を同時に利用している所見を見出しており、その反応の触媒する酵素を同定しており、その酵素の阻害実験に取り組む。これらの研究の遂行により、AML細胞が依存する窒素処理システムの分子メカニズムの解明に取り組むと同時に、新規治療標的分子の同定に取り組む。
|
Report
(1 results)
Research Products
(9 results)
-
-
-
-
-
-
[Journal Article] A Germinal Center-Associated Microenvironmental Signature Reflects Malignant Phenotype and Outcome of DLBCL.2022
Author(s)
Miyawaki K, Kato K, Sugio T, Sasaki K, Miyoshi H, Semba Y, Kikushige Y, Mori Y, Kunisaki Y, Iwasaki H, Miyamoto T, Kuo FC, Aster JC, Ohshima K, Maeda T, Akashi K.
-
Journal Title
Blood Adv.
Volume: 6
Issue: 7
Pages: 2388-2402
DOI
Related Report
Peer Reviewed / Open Access / Int'l Joint Research
-
-
-