Exploration of homeostastic regulation of amino acid metabolism-through the analyses of glucagon action and liver zonation.
Project/Area Number |
23K24765
|
Project/Area Number (Other) |
22H03508 (2022-2023)
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Multi-year Fund (2024) Single-year Grants (2022-2023) |
Section | 一般 |
Review Section |
Basic Section 59040:Nutrition science and health science-related
|
Research Institution | Nagoya University |
Principal Investigator |
林 良敬 名古屋大学, 環境医学研究所, 教授 (80420363)
|
Co-Investigator(Kenkyū-buntansha) |
堀 美香 名古屋大学, 環境医学研究所, 講師 (60598043)
|
Project Period (FY) |
2022-04-01 – 2027-03-31
|
Project Status |
Granted (Fiscal Year 2024)
|
Budget Amount *help |
¥17,160,000 (Direct Cost: ¥13,200,000、Indirect Cost: ¥3,960,000)
Fiscal Year 2026: ¥3,380,000 (Direct Cost: ¥2,600,000、Indirect Cost: ¥780,000)
Fiscal Year 2025: ¥3,380,000 (Direct Cost: ¥2,600,000、Indirect Cost: ¥780,000)
Fiscal Year 2024: ¥3,380,000 (Direct Cost: ¥2,600,000、Indirect Cost: ¥780,000)
Fiscal Year 2023: ¥3,380,000 (Direct Cost: ¥2,600,000、Indirect Cost: ¥780,000)
Fiscal Year 2022: ¥3,640,000 (Direct Cost: ¥2,800,000、Indirect Cost: ¥840,000)
|
Keywords | 糖新生 / 糖尿病 / 肝小葉 / グルカゴン / アミノ酸 / ランゲルハンス島 / 代謝制御 / 膵臓神経内分泌腫瘍 / 骨格筋 / Zonation / 動物モデル |
Outline of Research at the Start |
生体の主要構成要素である蛋白質を構成するアミノ酸の代謝制御機構は、生体の主要なエネルギー源である糖代謝制御機構と比べて未解明の部分が多い。細胞レベルではオートファジーによるタンパク質分解・アミノ酸再利用の制御機構などについて解明が進んでいるものの、器官・臓器・個体レベルの知見は非常に少ない。本研究ではアミノ酸の血中濃度や代謝産物の呼気への排出速度の測定などをはじめとする多角的・包括的な解析を展開して個体レベルにおけるアミノ酸代謝制御機構ならびに同機構における膵島-肝臓間連関を始めとした臓器連関の実態解明への道を切り開きたい。
|
Outline of Annual Research Achievements |
グルカゴンはインスリンと同様、約100年前に発見された。その発見の経緯からグルカゴンの主要な生理作用は血糖上昇であると長く考えられてきた。我々は2009年に世界で初めてグルカゴン遺伝子を欠損する動物モデル(GCGKO)を作出し、その表現型解析を進めてきた。GCGKOを対照群であるヘテロ接合体との間では血糖値に統計学的に有意な差を認めない一方で、GCGKOが肝臓におけるアミノ酸代謝酵素の発現の低下に伴って、高アミノ酸血症を示す事を明らかとしてきた。またGCGKOはグルカゴン遺伝子のかわりに緑色蛍光蛋白質を発現する「α細胞」の過形成を示し、加齢に伴って膵臓の神経内分泌腫瘍を形成することも報告してきた。我々のこれまでの実績を含む、国内外の研究成果の集積から近年においては、肝臓と膵臓ランゲルハンス島のα細胞の間にグルカゴンとアミノ酸を媒介した強固な相互フィードバックが存在することは、ほぼ確立されるに至っている。 アミノ酸は生体の主要構成成分であるタンパク質の構成要素であり、その血中濃度は通常の栄養摂取条件のもとでは一定範囲に保たれている。しかしながら、臓器・個体レベルにおけるアミノ酸代謝の制御機構・恒常性維持機構の解明はほとんど進んでいない。アミノ酸からアミノ基が除去された代謝産物は、主に肝臓においてブドウ糖へと変換され、肝静脈を経て全身へ放出されエネルギー源となる。本研究は、動物個体の高蛋白質食負荷に対する応答や、アミノ酸の主要な代謝の場である肝臓の小葉構造に注目した解析、さらには安定同位体である13Cを含むアミノ酸を投与して、呼気への13CO2排出を測定することによる個体レベルでのアミノ酸異化の解析などを行うことにより、アミノ酸代謝の恒常性維持機構を解明することを目的としている。
|
Current Status of Research Progress |
Current Status of Research Progress
2: Research has progressed on the whole more than it was originally planned.
Reason
高蛋白質食負荷に対する応答の解析結果については2022年度に論文報告した。この過程で、分岐鎖アミノ酸の代謝状況を解析するためには筋肉の解析も必要であることが明らかとなったため、グルカゴン遺伝子欠損マウスの筋肉の形態・遺伝子発現等の解析を行った結果、グルカゴンの欠損により骨格筋重量の増加や遅筋から速筋への移行等、高タンパク質食の接種によりみられる変化が起きていることが示された。グルカゴン欠損においては血中アミノ酸濃度が上昇したいることが、この変化の背景にあると考えられた。これらの内容は2023年度に論文報告した。肝臓の小葉構造に着目したzonationの解析や安定同位体を含むアミノ酸を投与する解析は現在も進めている。Zonation解析や安定同位体を用いた解析は、当初の想定よりは時間がかかっているが、高蛋白質食負荷や筋肉の解析については論文報告にまとめていることから、総合的には、概ね順調と判断した。
|
Strategy for Future Research Activity |
運動・摂餌・飲水測定システムが付随した呼気ガス質量分析システムを用いて、13C同位体を含むグルコースを腹腔内投与し、呼気中の13Cを含む二酸化炭素の量を測定することにより、投与されたグルコースに由来する13Cがどのように排出されるか測定できることが確認できている。今後引き続き、アミノ酸の動的な代謝を捕捉するために、アラニン・グルタミンをはじめとするアミノ酸を投与してグルカゴン遺伝子欠損マウスおよび対照群の間の、アミノ酸の動的な代謝の違いと、これらの違いが生じる機構の解析を行う。 肝臓のZonationについては、Zoneのマーカーとなる蛋白質(アミノ酸代謝酵素を含む)に対する特異的抗体を用いた免疫組織化学による定量的解析を引き続き行う。また蛋白質摂取量の変化がZonationに及ぼす影響の解析を進める。グルカゴンの生物学的半減期が極めて短いためにグルカゴン補充実験で安定した結果を得ることが困難であるため、持続的な作用を持つグルカゴンアゴニストを用いた実験を検討する。
|
Report
(2 results)
Research Products
(18 results)
-
-
-
-
-
[Journal Article] An analysis of intestinal morphology and incretin-producing cells using tissue optical clearing and 3-D imaging2022
Author(s)
Hatoko T, Harada N, Tokumoto S, Yamane S, Ikeguchi-Ogura E, Kato T, Yasuda T, Tatsuoka H, Shimazu-Kuwahara S, Yabe D, Hayashi Y, Inagaki N.
-
Journal Title
Sci Rep.
Volume: 12
Issue: 1
Pages: 17530-17530
DOI
Related Report
Peer Reviewed / Open Access
-
-
-
-
-
[Presentation] 「食べる順番」の効果発現機序解明に向けて2023
Author(s)
劉 彦言, 土田宏美, 飯塚勝美, 窪田創大, 堀川幸男, 桑田仁司, 藤原結花, 清野佑介, 林 良敬, 清野裕, 矢部大介
Organizer
第66回日本糖尿病学会年次学術集会
Related Report
-
-
-
-
-
-
-
-