• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Extraction and Use of Highly Explainable and Transferable Indicators for AI in Education

Research Project

Project/Area Number 23K25698
Project/Area Number (Other) 23H01001 (2023)
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeMulti-year Fund (2024)
Single-year Grants (2023)
Section一般
Review Section Basic Section 09070:Educational technology-related
Research InstitutionKyoto University

Principal Investigator

Flanagan Brendan  京都大学, 国際高等教育院, 特定准教授 (00807612)

Co-Investigator(Kenkyū-buntansha) Majumdar Rwito  熊本大学, 半導体・デジタル研究教育機構, 准教授 (30823348)
戴 憶菱  京都大学, 学術情報メディアセンター, 特定研究員 (90912254)
高見 享佑  国立教育政策研究所, 教育データサイエンスセンター, 主任研究官 (70912252)
Project Period (FY) 2023-04-01 – 2026-03-31
Project Status Granted (Fiscal Year 2024)
Budget Amount *help
¥18,850,000 (Direct Cost: ¥14,500,000、Indirect Cost: ¥4,350,000)
Fiscal Year 2025: ¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2024: ¥5,460,000 (Direct Cost: ¥4,200,000、Indirect Cost: ¥1,260,000)
Fiscal Year 2023: ¥8,840,000 (Direct Cost: ¥6,800,000、Indirect Cost: ¥2,040,000)
KeywordsEducational AI / Explainability / Transferability
Outline of Research at the Start

AI models are increasingly being used in education. To explain AI model decisions and support their transfer to new or low resource classes, we aim to identify and extract highly explainable and transferable indicators and investigate their application in machine learning in education.

URL: 

Published: 2023-04-18   Modified: 2024-08-08  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi