• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

データ科学・計算機化学の融合による有機光電変換材料の創生プラットフォーム

Research Project

Project/Area Number 23KF0250
Research Category

Grant-in-Aid for JSPS Fellows

Allocation TypeMulti-year Fund
Section外国
Review Section Basic Section 13020:Semiconductors, optical properties of condensed matter and atomic physics-related
Research InstitutionKyoto University

Principal Investigator

Packwood Daniel  京都大学, 高等研究院, 准教授 (40640884)

Co-Investigator(Kenkyū-buntansha) WEAL GEOFFREY  京都大学, 高等研究院, 外国人特別研究員
Project Period (FY) 2023-11-15 – 2026-03-31
Project Status Granted (Fiscal Year 2023)
Budget Amount *help
¥1,300,000 (Direct Cost: ¥1,300,000)
Fiscal Year 2025: ¥700,000 (Direct Cost: ¥700,000)
Fiscal Year 2024: ¥400,000 (Direct Cost: ¥400,000)
Fiscal Year 2023: ¥200,000 (Direct Cost: ¥200,000)
KeywordsOrganic photovoltatics / Exciton diffusion / Excitonic coupling / First-principles / Data / Machine learning / Graph neural network
Outline of Research at the Start

有機太陽電池は地球温暖化対策として高く期待される。本研究では、計算・データ科学を統合する革新的な計算プラットフォームトを開発し、材料設計ルールをデータから導き出すことを目指す。具体的には、有機半導体における構造・物性値データベースを構築し、光-エネルギーの交換率が分子構造によってどのように影響されるか、また光-エネルギーの交換率を最大化するためにはどのように分子構造を設計すれば良いかを解明する。そこへ、脱炭素社会に必要な材料の発見とともに、材料科学研究の全体的なデジタル化を促進する。

Outline of Annual Research Achievements

This project aims to accelerate exciton diffusion simulations in organic photovolatic materials using machine learning and data science. During FY2023, we started the following tasks: (i) creation of a database of organic semiconducting materials, including structure, transition amplitudes, and reorganization energies; (ii) creation of a preliminary graph neural network (GNN) model which can predict transition amplitudes via atomic transition charge predictions.

Current Status of Research Progress
Current Status of Research Progress

2: Research has progressed on the whole more than it was originally planned.

Reason

The project is progressing exactly as planned.

Strategy for Future Research Activity

During FY2024, we will complete our GNN model and verify it by comparing to experimental exciton diffusion values. We also aim to grasp the underlying physics of the GNN model by creating simplified theoretical models and performing sensitivity analyses.

Report

(1 results)
  • 2023 Research-status Report

URL: 

Published: 2023-11-17   Modified: 2024-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi