• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Example based Anomaly Sign Detection

Research Project

Project/Area Number 24300072
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypePartial Multi-year Fund
Section一般
Research Field Perception information processing/Intelligent robotics
Research InstitutionWakayama University

Principal Investigator

WADA Toshikazu  和歌山大学, システム工学部, 教授 (00231035)

Co-Investigator(Renkei-kenkyūsha) MAEDA Shunji  株式会社日立製作所, 研究開発本部 (00626799)
SHIBUYA Hisae  株式会社日立製作所, 研究開発本部 (50626801)
Project Period (FY) 2012-04-01 – 2016-03-31
Project Status Completed (Fiscal Year 2015)
Budget Amount *help
¥13,910,000 (Direct Cost: ¥10,700,000、Indirect Cost: ¥3,210,000)
Fiscal Year 2015: ¥2,990,000 (Direct Cost: ¥2,300,000、Indirect Cost: ¥690,000)
Fiscal Year 2014: ¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
Fiscal Year 2013: ¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
Fiscal Year 2012: ¥5,720,000 (Direct Cost: ¥4,400,000、Indirect Cost: ¥1,320,000)
Keywordsパターン認識 / 異常予兆検出 / 非線形回帰 / ガウス過程回帰 / Dynamic Active Set / 時間多重解像度解析 / Spectro Anomaly Gram / Gaussian Process Regression / Similarity Based Modeling
Outline of Final Research Achievements

Anomaly sign detection is a problem detecting subtle deviation of sensor data from normal data for monitoring patients, industrial plant, and so on. Anomaly sign detection can be realized as a problem measuring the discrepancy between observed data and estimated sensor data by non-linear regression. In this research, we developed anomaly sign detector based on Gaussian Process Regression (GPR). As the results of this research, we proposed 1) “Anomaly Measure” representing the ratio of the discrepancy and GPR estimated standard deviation, 2) multi-scale derivation and visualization of anomaly measure “Spectro Anomaly Gram(SAG)”, 3) an acceleration of GPR computation “Dynamic Active Set(DAS)”, 4) “MultiVariate GPR (MVGPR)” estimating vector output and covariant matrix, 5) “Reweighted MVGPR” to improve improper covariant matrix estimated by MVGPR, and so on. We applied our methods to industrial plant data and ECG data, and confirmed the effectiveness.

Report

(5 results)
  • 2015 Annual Research Report   Final Research Report ( PDF )
  • 2014 Annual Research Report
  • 2013 Annual Research Report
  • 2012 Annual Research Report
  • Research Products

    (18 results)

All 2015 2014 2013

All Journal Article (1 results) (of which Peer Reviewed: 1 results) Presentation (17 results) (of which Int'l Joint Research: 1 results,  Invited: 1 results)

  • [Journal Article] Gaussian Process Regressionに基づく時系列データの異常モニタリング2013

    • Author(s)
      和田俊和、 尾崎 晋作、 前田 俊二、 渋谷 久恵
    • Journal Title

      電子情報通信学会論文誌. D, 情報・システム

      Volume: J96-D(12) Pages: 3068-3078

    • NAID

      110009685324

    • Related Report
      2013 Annual Research Report
    • Peer Reviewed
  • [Presentation] Fast Keypoint Reduction for Image Retrieval by Accelerated Diverse Density Computation2015

    • Author(s)
      Toshikazu Wada, Yuichi Mukai
    • Organizer
      The IEEE ICDM Workshop on Big Media Data
    • Place of Presentation
      Atrantic City
    • Year and Date
      2015-11-14
    • Related Report
      2015 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Gaussian Process Regression を用いた異常検出法2015

    • Author(s)
      和田俊和
    • Organizer
      工学研究シーズ合同発表会プログラム
    • Place of Presentation
      大阪府立大学
    • Year and Date
      2015-11-09
    • Related Report
      2015 Annual Research Report
  • [Presentation] パターン間類似度・相違度の再考2015

    • Author(s)
      和田俊和
    • Organizer
      画像の認識・理解シンポジウム チュートリアル
    • Place of Presentation
      大阪(ホテル阪急エキスポパーク)
    • Year and Date
      2015-07-27
    • Related Report
      2015 Annual Research Report
    • Invited
  • [Presentation] 特徴点削減のためDiverseDensityの近似高速化2015

    • Author(s)
      向井 祐一郎, 和田 俊和
    • Organizer
      コンピュータビジョンとイメージメディア研究会(CVIM)
    • Place of Presentation
      奈良先端科学技術大学院大学 ミレニアムホール (奈良県生駒市)
    • Year and Date
      2015-01-22 – 2015-01-23
    • Related Report
      2014 Annual Research Report
  • [Presentation] ベクトル出力可能なガウス過程回帰における共分散行列の推定2015

    • Author(s)
      松村祐貴,和田俊和
    • Organizer
      コンピュータビジョンとイメージメディア研究会(CVIM)
    • Place of Presentation
      奈良先端科学技術大学院大学 ミレニアムホール (奈良県生駒市)
    • Year and Date
      2015-01-22 – 2015-01-23
    • Related Report
      2014 Annual Research Report
  • [Presentation] 画像検索のためのクエリ特徴点削減法の提案2015

    • Author(s)
      湯浅 圭太, 和田 俊和
    • Organizer
      コンピュータビジョンとイメージメディア研究会(CVIM)
    • Place of Presentation
      奈良先端科学技術大学院大学 ミレニアムホール (奈良県生駒市)
    • Year and Date
      2015-01-22 – 2015-01-23
    • Related Report
      2014 Annual Research Report
  • [Presentation] 非線形写像を用いた顔画像の想起と人物認識への応用2014

    • Author(s)
      古谷 俊太, 和田 俊和
    • Organizer
      コンピュータビジョンとイメージメディア研究会(CVIM)
    • Place of Presentation
      筑波大学 第三エリア3L棟 (茨城県つくば市)
    • Year and Date
      2014-09-01 – 2014-09-02
    • Related Report
      2014 Annual Research Report
  • [Presentation] 動的Active Setを用いたGaussian Process Regressionによるベクトル出力推定法2013

    • Author(s)
      松村祐貴
    • Organizer
      パターン認識・メディア理解研究会(PRMU)
    • Place of Presentation
      京都大学(京都府)
    • Year and Date
      2013-01-24
    • Related Report
      2012 Annual Research Report
  • [Presentation] 画素識別と回帰計算に基づく近赤外線顔画像のカラー化手法2013

    • Author(s)
      森敦
    • Organizer
      パターン認識・メディア理解研究会(PRMU)
    • Place of Presentation
      京都大学(京都府)
    • Year and Date
      2013-01-24
    • Related Report
      2012 Annual Research Report
  • [Presentation] 人物顔画像の階層的クラスタリングと共通局所特徴量抽出の同時実行による顔モデル生成2013

    • Author(s)
      福井崇之
    • Organizer
      パターン認識・メディア理解研究会(PRMU)
    • Place of Presentation
      京都大学(京都府)
    • Year and Date
      2013-01-23
    • Related Report
      2012 Annual Research Report
  • [Presentation] Multiple-Instance Learningを用いたCo-segmentation2013

    • Author(s)
      坂田惇
    • Organizer
      パターン認識・メディア理解研究会(PRMU)
    • Place of Presentation
      京都大学(京都府)
    • Year and Date
      2013-01-23
    • Related Report
      2012 Annual Research Report
  • [Presentation] Diverse Densityに基づく画像データ検索用キーポイント抽出法について2013

    • Author(s)
      湯浅圭太
    • Organizer
      パターン認識・メディア理解研究会(PRMU)
    • Place of Presentation
      京都大学(京都府)
    • Year and Date
      2013-01-23
    • Related Report
      2012 Annual Research Report
  • [Presentation] Face Model from Local Features: Image Clustering and Common Local Feature Extraction based on Diverse Density2013

    • Author(s)
      Takayuki Fukui,Toshikazu Wada,Hiroshi Oike
    • Organizer
      コンピュータビジョンとイメージメディア研究会(CVIM)
    • Place of Presentation
      東京農工大学 小金井キャンパス (東京都)
    • Related Report
      2013 Annual Research Report
  • [Presentation] Automatic Colorization of Near-Infrared Monochrome Face Image based on Position-Dependent Regression2013

    • Author(s)
      Atsushi Mori,Toshikazu Wada,Hiroshi Oike
    • Organizer
      コンピュータビジョンとイメージメディア研究会(CVIM)
    • Place of Presentation
      東京農工大学 小金井キャンパス (東京都)
    • Related Report
      2013 Annual Research Report
  • [Presentation] Diverse Densityを用いた画像検索用キーポイントの削減法2013

    • Author(s)
      湯浅 圭太,和田 俊和,渡辺 顕司
    • Organizer
      コンピュータビジョンとイメージメディア研究会(CVIM)
    • Place of Presentation
      東京農工大学 小金井キャンパス (東京都)
    • Related Report
      2013 Annual Research Report
  • [Presentation] Gaussian Process Regression with Dynamic Active Setand Its Application to Anomaly Detection2013

    • Author(s)
      Toshikazu Wada, Yuki Matsumura, Shunji Maeda, and Hisae Shibuya
    • Organizer
      The 9th International Conference on Data Mining (DMIN'13)
    • Place of Presentation
      Las Vegas, USA
    • Related Report
      2013 Annual Research Report
  • [Presentation] Keypoint Reduction for Smart Image Retrieval2013

    • Author(s)
      Keita Yuasa, Toshikazu Wada
    • Organizer
      IEEE International Symposium on Multimedia (ISM2013)
    • Place of Presentation
      Anaheim, USA
    • Related Report
      2013 Annual Research Report

URL: 

Published: 2012-04-24   Modified: 2019-07-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi