• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Geometric realization of the crystal bases of standard modules over quantum affine algebras

Research Project

Project/Area Number 24540010
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Algebra
Research InstitutionTokyo Institute of Technology

Principal Investigator

Naito Satoshi  東京工業大学, 理工学研究科, 教授 (60252160)

Co-Investigator(Renkei-kenkyūsha) SAITO Yoshihisa  東京大学, 大学院数理科学研究科, 准教授 (20294522)
KATO Syu  京都大学, 大学院理学研究科, 准教授 (40456760)
SAGAKI Daisuke  筑波大学, 数理物質系, 准教授 (40344866)
Research Collaborator Lenart Cristian  State University of New York at Albany, Department of Mathematics and Statistics, 教授
Schilling Anne  University of California, Department of Mathematics, 教授
Shimozono Mark  Virginia Tech, Department of Mathematics, 教授
Project Period (FY) 2012-04-01 – 2016-03-31
Project Status Completed (Fiscal Year 2016)
Budget Amount *help
¥4,940,000 (Direct Cost: ¥3,800,000、Indirect Cost: ¥1,140,000)
Fiscal Year 2016: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2015: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2014: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2013: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2012: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Keywords表現論 / アフィン量子群の表現論 / レベル・ゼロ表現 / extremal ウエイト加群 / Demazure 部分加群 / マクドナルド多項式 / Lakshmibai-Seshadri パス / 半無限旗多様体 / 代数学 / Macdonald 多項式 / pQLS パス / Macdonald polynomial / crystal basis / quantum affine algebra / extremal weight module / Lakshmibai-Seshadri path / quantum Weyl module / 結晶基底 / semi-infinite Bruhat 順序 / 量子 Bruhat グラフ / Demazure 加群
Outline of Final Research Achievements

First, we got an explicit description, in terms of the quantum Bruhat graph, of the graded character of an arbitrary Demazure submodule of a level-zero extremal weight module over a quantum affine algebra. Also, we got an explicit description, in terms of the quantum Bruhat graph, of the specializations at t = 0 and t = infinity of an arbitrary nonsymmetric Macdonald polynomial. By combining these results, we proved that the graded character of the Demazure submodule corresponding to the identity element (resp., the longest element) of a finite Weyl group is identical to the product of a certain factor (which is an explicit rational function in q) and the specialization at t = 0 (resp., at t = infinity) of the symmetric (resp., nonsymmetric) Macdonald polynomial associated to a dominant integral weight (resp., anti-dominant integral weight).
Moreover, we studied the connection of level-zero Demazure submodules above with Schubert subvarieties of a semi-infinite flag manifold.

Report

(5 results)
  • 2016 Final Research Report ( PDF )
  • 2015 Annual Research Report
  • 2014 Research-status Report
  • 2013 Research-status Report
  • 2012 Research-status Report
  • Research Products

    (18 results)

All 2016 2015 2014 2013 2012 Other

All Int'l Joint Research (1 results) Journal Article (8 results) (of which Peer Reviewed: 8 results) Presentation (9 results) (of which Int'l Joint Research: 2 results,  Invited: 9 results)

  • [Int'l Joint Research] State University of New York at Albany/University of California, Davis/Virginia Tech(U.S.A.)

    • Related Report
      2015 Annual Research Report
  • [Journal Article] Demazure submodules of level-zero extremal weight modules2016

    • Author(s)
      Satoshi Naito and Daisuke Sagaki
    • Journal Title

      Mathematische Zeitschrift

      Volume: 印刷中 Issue: 3-4 Pages: 937-978

    • DOI

      10.1007/s00209-016-1628-7

    • Related Report
      2015 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Semi-infinite Lakshmibai-Seshadri path model for level-zero extremal weight modules over quantum affine algebras2016

    • Author(s)
      Motohiro Ishii, Satoshi Naito and Daisuke Sagaki
    • Journal Title

      Advances in Mathematics

      Volume: 290 Pages: 967-1009

    • DOI

      10.1016/j.aim.2015.11.037

    • Related Report
      2015 Annual Research Report
    • Peer Reviewed
  • [Journal Article] A uniform model for Kirillov-Reshetikhin crystals I: Lifting the parabolic quantum Bruhat graph2014

    • Author(s)
      Cristian Lenart, Satoshi Naito, Daisuke Sagaki, Anne Schilling, Mark Shimozono
    • Journal Title

      International Mathematics Research Notices (to appear)

      Volume: 印刷中 Pages: 1848-1901

    • DOI

      10.1093/imrn/rnt263

    • Related Report
      2014 Research-status Report
    • Peer Reviewed
  • [Journal Article] Toward Berenstein-Zelevinsky data in affine type A, part III2013

    • Author(s)
      S. Naito, D. Sagaki, and Y. Saito
    • Journal Title

      Proof of the connectedness, Springer Proceedings in Mathematics and Statistics

      Volume: Vol.40 Pages: 361-402

    • DOI

      10.1007/978-1-4471-4863-0_15

    • ISBN
      9781447148623, 9781447148630
    • Related Report
      2013 Research-status Report 2012 Research-status Report
    • Peer Reviewed
  • [Journal Article] Tensor product multiplicities for crystal bases of extremal weight modules over quantum infinite rank affine algebras of type B_{infinity}, C_{infinity}, and D_{infinity}2012

    • Author(s)
      S. Naito and D. Sagaki
    • Journal Title

      Trans. Amer. Math. Soc

      Volume: 364

    • Related Report
      2012 Research-status Report
    • Peer Reviewed
  • [Journal Article] Toward Berenstein-Zelevinsky data in affine type A, Part II : Explicit description2012

    • Author(s)
      S.Naito, D. Sagaki, Y. Saito
    • Journal Title

      Contemporary Mathematics

      Volume: 565 Pages: 185-216

    • DOI

      10.1090/conm/565/11179

    • Related Report
      2012 Research-status Report
    • Peer Reviewed
  • [Journal Article] Toward Berenstein-Zelevinsky data in affine type A, Part I : Construction of the affine analogs2012

    • Author(s)
      S.Naito, D.Sagaki, Y. Saito
    • Journal Title

      Contemporary Mathematics

      Volume: 565 Pages: 143-184

    • DOI

      10.1090/conm/565/11180

    • Related Report
      2012 Research-status Report
    • Peer Reviewed
  • [Journal Article] TensorproductsandMinkowskisumsofMirkovic-Vilonenpolytopes2012

    • Author(s)
      S.Kato,S.Naito,andD.Sagaki
    • Journal Title

      Transform.Groups

      Volume: Vol.17,no.1 Issue: 1 Pages: 195-207

    • DOI

      10.1007/s00031-011-9159-0

    • Related Report
      2012 Research-status Report
    • Peer Reviewed
  • [Presentation] Symmetric Macdonald polynomials and pseudo-quantum Lakshmibai-Seshadri paths2016

    • Author(s)
      Satoshi Naito
    • Organizer
      Infinite Analysis 16
    • Place of Presentation
      大阪市立大学
    • Year and Date
      2016-03-26
    • Related Report
      2015 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 対称 Macdonald 多項式の t = 0 における特殊化と、アフィン量子群の有限次元表現2015

    • Author(s)
      内藤 聡
    • Organizer
      第 60 回代数学シンポジウム
    • Place of Presentation
      静岡大学
    • Year and Date
      2015-09-03
    • Related Report
      2015 Annual Research Report
    • Invited
  • [Presentation] Specializations of symmetric Macdonald polynomials and pseudoQLS paths2015

    • Author(s)
      Satoshi Naito
    • Organizer
      Summer School and Workshop on Lie Theory and Representation Theory IV
    • Place of Presentation
      East China Normal University, Shanghai, China
    • Year and Date
      2015-07-04
    • Related Report
      2015 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Comparison of the two specializations of nonsymmetric Macdonald polynomials: at zero and at infinity2015

    • Author(s)
      Satoshi Naito
    • Organizer
      Winter School on Representation Theory
    • Place of Presentation
      京都大学数理解析研究所
    • Year and Date
      2015-01-22
    • Related Report
      2014 Research-status Report
    • Invited
  • [Presentation] On two specializations of nonsymmetric Macdonald polynomials: at zero and at infinity2014

    • Author(s)
      Satoshi Naito
    • Organizer
      Shanghai Workshop on Representation Theory
    • Place of Presentation
      Tongji University, Shanghai (China)
    • Year and Date
      2014-12-07
    • Related Report
      2014 Research-status Report
    • Invited
  • [Presentation] Demazure submodules of level-zero extremal weight modules and specializations of nonsymmetric Macdonald polynomials2014

    • Author(s)
      Satoshi Naito
    • Organizer
      ICM 2014 Satellite Conference on Representation Theory and Related Topics
    • Place of Presentation
      EXCO, Daegu (South Korea)
    • Year and Date
      2014-08-08
    • Related Report
      2014 Research-status Report
    • Invited
  • [Presentation] Semi-infinite LS path realization of Demazure subcrystals for level-zero extremal weight modules over quantum affine algebras

    • Author(s)
      Satoshi Naito
    • Organizer
      Shanghai Workshop on Representation Theory
    • Place of Presentation
      Tongji University, People's Republic of China
    • Related Report
      2013 Research-status Report
    • Invited
  • [Presentation] A new path model for extremal weight modules over quantum affine algebras

    • Author(s)
      Satoshi Naito
    • Organizer
      京都大学数理解析研究所共同利用研究集会 「超弦理論, 表現論, 可積分系の数理」
    • Place of Presentation
      京都大学数理解析研究所
    • Related Report
      2013 Research-status Report
    • Invited
  • [Presentation] On an intrinsic description of level-zero Lakshmibai-Seshadri paths and the quantum Schubert calculus

    • Author(s)
      Satoshi Naito
    • Organizer
      Mathematical Society of Japan, Seasonal Insitute 2012 "Schubert Calculus"
    • Place of Presentation
      大阪市立大学
    • Related Report
      2012 Research-status Report
    • Invited

URL: 

Published: 2013-05-31   Modified: 2019-07-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi