• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Compactification of Riemannian manifolds and embeddings of graphs

Research Project

Project/Area Number 24540072
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Geometry
Research InstitutionKanazawa University

Principal Investigator

Kasue Atsushi  金沢大学, 数物科学系, 教授 (40152657)

Co-Investigator(Kenkyū-buntansha) Hattori Tae  石川工業高等専門学校, 一般教育, 講師 (40569365)
Project Period (FY) 2012-04-01 – 2016-03-31
Project Status Completed (Fiscal Year 2015)
Budget Amount *help
¥4,940,000 (Direct Cost: ¥3,800,000、Indirect Cost: ¥1,140,000)
Fiscal Year 2015: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2014: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2013: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2012: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Keywordsリーマン多様体 / ネットワーク / 理想境界 / ディリクレ形式 / ディリクレエネルギー有限写像 / ランダムウォーク / スペクトルギャップ / 双曲埋め込み / ディクレエネルギー有限写像 / 無限ネットワーク / 有効抵抗 / 容量 / 倉持コンパクト化 / p-調和関数 / p-ディリクレ和有限関数 / 測地的コンパクト化
Outline of Final Research Achievements

We study a connected nonparabolic, or transient network compactified with the Kuramochi boundary, and show that the random walk converges almost surely to a random variable valued in the harmonic boundary, and a function of finite Dirichlet energy converges along the random walk to a random variable almost surely and in L2. We also give integral representations of solutions of Poisson equations on the Kuramochi compactification.  We also study finite connected graphs which admit quasi monomorphisms to hyperbolic spaces and give geometric bounds for the Cheeger constants in terms of the volume, an upper bound of the degree, and the quasi monomorphism. Moreover we develop a potential theory of nonlinear networks in the frame work of modular sequence spaces.

Report

(5 results)
  • 2015 Annual Research Report   Final Research Report ( PDF )
  • 2014 Research-status Report
  • 2013 Research-status Report
  • 2012 Research-status Report
  • Research Products

    (5 results)

All 2015 2012 Other

All Journal Article (2 results) (of which Peer Reviewed: 2 results,  Open Access: 1 results,  Acknowledgement Compliant: 1 results) Presentation (3 results) (of which Invited: 3 results)

  • [Journal Article] Expansion constants and hyperbolic embeddings2015

    • Author(s)
      T. Hattori and A. Kasue
    • Journal Title

      Mathematika

      Volume: 61 Issue: 1 Pages: 1-13

    • DOI

      10.1112/s0025579314000254

    • Related Report
      2015 Annual Research Report 2014 Research-status Report
    • Peer Reviewed / Open Access / Acknowledgement Compliant
  • [Journal Article] Functions with finite Dirichlet sum of order p and quasi-monomorphisms of infinite graphs2012

    • Author(s)
      Tae Hattori and Atsushi Kasue
    • Journal Title

      Nagoya Math. J.

      Volume: 207 Pages: 95-138

    • Related Report
      2012 Research-status Report
    • Peer Reviewed
  • [Presentation] Kuramochi boundaries of transient networks2015

    • Author(s)
      Atsushi Kasue
    • Organizer
      Topics in Differential Geometry and its discretizations
    • Place of Presentation
      WPI-AIMR, 東北大学
    • Year and Date
      2015-01-10 – 2015-01-12
    • Related Report
      2014 Research-status Report
    • Invited
  • [Presentation] グラフの埋込みとレイリーの単調性法則

    • Author(s)
      加須栄篤
    • Organizer
      2012 日本数学会 秋季総合分科会
    • Place of Presentation
      九州大学伊都キャンパス
    • Related Report
      2012 Research-status Report
    • Invited
  • [Presentation] 無限ネットワーク上のランダムウォークと倉持境界

    • Author(s)
      加須栄篤
    • Organizer
      第55回関数論シンポジウム
    • Place of Presentation
      金沢大学サテライトプラザ
    • Related Report
      2012 Research-status Report
    • Invited

URL: 

Published: 2013-05-31   Modified: 2019-07-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi