Project/Area Number |
24540097
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Geometry
|
Research Institution | Tokyo University of Science |
Principal Investigator |
|
Co-Investigator(Renkei-kenkyūsha) |
OMORI Hideki 東京理科大学, 理工学部, 教授 (20087018)
MAEDA Yoshiaki 東北大学, 理学部, 教授 (40101076)
MIYAZAKI Naoya 慶應義塾大学, 経済学部, 教授 (50315826)
|
Project Period (FY) |
2012-04-01 – 2015-03-31
|
Project Status |
Completed (Fiscal Year 2014)
|
Budget Amount *help |
¥5,200,000 (Direct Cost: ¥4,000,000、Indirect Cost: ¥1,200,000)
Fiscal Year 2014: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2013: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2012: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
|
Keywords | 変形量子化 / シンプレクティック幾何学 / ポアソン幾何学 / 非可換幾何学 / 量子化 / 力学 / 接触幾何学 / 複素解析幾何 / シンプレクティック・ポアソン幾何学 / 力学的幾何 / 複素解析 |
Outline of Final Research Achievements |
We consider non-formal deformation quantizaztion. In the obtained star product aligebra, we consider star exponntaials. Using the star exponentials, we can construct certain noncommutative functional identites. As an application, we investigate a concrete MIC-Kepler problem, its eigenvalues, and also its noncommutative symplectic reduction, with non formal star products. Based on the investitation on the MIC-Kepler problem,we extend the noncommutative reduction to general situation with S1 symmetry group. Using star exponentials,we also obtain vacumms, with which we can obtain representation of non-formal star product algebras.
|