• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Research on the loop spaces on Lie groups by combinatorial methods

Research Project

Project/Area Number 24540105
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Geometry
Research InstitutionOkayama University

Principal Investigator

NAKAGAWA Masaki  岡山大学, 教育学研究科(研究院), 准教授 (50370036)

Co-Investigator(Renkei-kenkyūsha) TAKESHI Ikeda  岡山理科大学, 理学部, 教授 (40309539)
NARUSE Hirhoshi  山梨大学, 大学院総合研究部, 教授 (20172596)
Project Period (FY) 2012-04-01 – 2015-03-31
Project Status Completed (Fiscal Year 2014)
Budget Amount *help
¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
Fiscal Year 2014: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2013: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2012: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Keywordsトポロジー / 幾何学 / リー群 / ループ空間 / 組合せ論 / 一般コホモロジー理論 / アフィン・グラスマン多様体 / シューア関数 / コホモロジー / コボルディズム / ホップ代数
Outline of Final Research Achievements

(1)Using the universal formal group law in complex cobordism theory, we introduced a new family of symmetric functions, which is a generalization of the usual factorial Schur P- and Q-functions due to Ivanov. Using these symmetric functions, we gave a description of the complex oriented generalized (co)homology Hopf algebras of the loop spaces on the infinite symplectic and special orthogonal group. Furthermore, we showed the various properties of these functions such as factorization property, vanishing property, and basis theorem.
(2)We also introduced a generalization of the usual factorial Schur functions. We gave a characterization of these symmetric functions via the Gysin homomorphism for the flag bundle associated with a complex vector bundle in complex oriented generalized cohomology theory.

Report

(4 results)
  • 2014 Annual Research Report   Final Research Report ( PDF )
  • 2013 Research-status Report
  • 2012 Research-status Report
  • Research Products

    (8 results)

All 2015 2014 2013 2012 Other

All Presentation (8 results) (of which Invited: 2 results)

  • [Presentation] 普遍Schur関数に対するGysinの公式2015

    • Author(s)
      中川 征樹
    • Organizer
      日本数学会2015年度年会
    • Place of Presentation
      明治大学
    • Year and Date
      2015-03-21
    • Related Report
      2014 Annual Research Report
  • [Presentation] K-homology of affine Grassmannians2014

    • Author(s)
      Masaki Nakagawa
    • Organizer
      第3回 シューベルトカルキュラスとその周辺
    • Place of Presentation
      岡山理科大学
    • Year and Date
      2014-08-27
    • Related Report
      2014 Annual Research Report
    • Invited
  • [Presentation] 古典群上のループ空間の一般(コ)ホモロジーの基底を与えるSchur P, Q-関数の拡張について2013

    • Author(s)
      中川 征樹
    • Organizer
      2013年度 日本数学会年会
    • Place of Presentation
      京都大学
    • Related Report
      2012 Research-status Report
  • [Presentation] K-homology of the space of loops on a symplectic group2012

    • Author(s)
      Masaki Nakagawa
    • Organizer
      MSJ-SI 2012 Schubert Calculus
    • Place of Presentation
      大阪市立大学
    • Related Report
      2012 Research-status Report
    • Invited
  • [Presentation] E-ホモロジーSchur P, Q-関数とLie群上のループ空間について2012

    • Author(s)
      中川 征樹
    • Organizer
      2012年度ホモトピー論シンポジウム
    • Place of Presentation
      山口大学
    • Related Report
      2012 Research-status Report
  • [Presentation] On the K-theory of ΩSp

    • Author(s)
      中川 征樹
    • Organizer
      福岡ホモトピー論セミナー
    • Place of Presentation
      福岡大学セミナーハウス
    • Related Report
      2013 Research-status Report
  • [Presentation] 旗多様体のトーラス同変コホモロジーとSchur関数

    • Author(s)
      中川 征樹
    • Organizer
      北大幾何学コロキウム
    • Place of Presentation
      北海道大学
    • Related Report
      2013 Research-status Report
  • [Presentation] 1. 旗多様体のトーラス同変コホモロジーについて 2. Kostant-KumarのNil-Hecke代数について

    • Author(s)
      中川 征樹
    • Organizer
      春の代数的位相幾何学セミナー
    • Place of Presentation
      岡山大学
    • Related Report
      2013 Research-status Report

URL: 

Published: 2013-05-31   Modified: 2019-07-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi