• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Computational harmonic analysis - approximation of function

Research Project

Project/Area Number 24540184
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Basic analysis
Research InstitutionTokyo Metropolitan University

Principal Investigator

OKADA MASAMI  首都大学東京, 理工学研究科, 教授 (00152314)

Co-Investigator(Kenkyū-buntansha) MORITOU SHINYA  奈良女子大学, 自然科学系, 教授 (30273832)
UENO TOSHIHIDE  東京大学, 医学(系)研究科(研究院), 助教 (40381446)
SAWANO YOSHIHIRO  首都大学東京, 大学院理工学研究科, 准教授 (40532635)
立澤 一哉  北海道大学, 理学(系)研究科(研究院), 准教授 (80227090)
Project Period (FY) 2012-04-01 – 2016-03-31
Project Status Completed (Fiscal Year 2015)
Budget Amount *help
¥5,070,000 (Direct Cost: ¥3,900,000、Indirect Cost: ¥1,170,000)
Fiscal Year 2015: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2014: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2013: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2012: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywords実解析学 / サンプリング定理 / 多変数関数近似 / データ解析 / 不規則格子点 / 正定型関数 / サンプリング補間 / ラグランジュ補間関数 / 基底関数 / 近似誤差評価 / Greedy アルゴリズム / 逆問題
Outline of Final Research Achievements

We investigated the general sampling theorem for scattered data in multi dimensional Euclidean spaces, which means the reconstruction of unknown functions from their data observed on irregularly scattered infinite points. In particular, we established the mathematical theory of the method of using suitable positive definite functions. In fact we have succeeded in proving an optimal
approximate error estimate previously known for the regular sampling case and the applicability of the method. One of the key points is a breakthrough on the multi dimensional polynomial approximation.

Report

(5 results)
  • 2015 Annual Research Report   Final Research Report ( PDF )
  • 2014 Research-status Report
  • 2013 Research-status Report
  • 2012 Research-status Report
  • Research Products

    (9 results)

All 2015 2014 2013 2012 Other

All Journal Article (3 results) Presentation (6 results) (of which Invited: 3 results)

  • [Journal Article] 古典フーリエ解析の応用に憧れた40年2015

    • Author(s)
      岡田 正己
    • Journal Title

      調和解析セミナー

      Volume: 31 Pages: 23-27

    • Related Report
      2015 Annual Research Report
  • [Journal Article] サンプリング値の補間による未知関数の近似的再構成2013

    • Author(s)
      岡田 正己
    • Journal Title

      数理解析研究所講究録

      Volume: 1869 Pages: 58-68

    • Related Report
      2013 Research-status Report
  • [Journal Article] サンプリング値の補間による未知関数の近似的再構成2013

    • Author(s)
      岡田正巳
    • Journal Title

      数理解析研究所究録

      Volume: 未定

    • Related Report
      2012 Research-status Report
  • [Presentation] On the interpolation and approximation of functions2015

    • Author(s)
      岡田 正己
    • Organizer
      中央大学数学科 教室講演
    • Place of Presentation
      Chung-Ang University(Seoul KOREA
    • Year and Date
      2015-10-02
    • Related Report
      2015 Annual Research Report
  • [Presentation] 不規則サンプリング補間と近似誤差の数理2014

    • Author(s)
      岡田正己、森田正紀
    • Organizer
      ウェーブレット理論とその工学への応用
    • Place of Presentation
      大阪教育大学(天王寺キャンパス)
    • Year and Date
      2014-11-08
    • Related Report
      2014 Research-status Report
  • [Presentation] Sampling approximation of functions on scattered points2014

    • Author(s)
      岡田正己
    • Organizer
      ICM 2014 Satellite Conference in Harmonic Analysis
    • Place of Presentation
      Chosun University, Gwangju, Korea
    • Year and Date
      2014-08-06
    • Related Report
      2014 Research-status Report
    • Invited
  • [Presentation] サンプリング値の補間による未知関数の再構成2012

    • Author(s)
      岡田正巳
    • Organizer
      RIMS共同研究(ウェーブレット解析とサンプリング理論)
    • Place of Presentation
      京都大学数理解析研究所
    • Related Report
      2012 Research-status Report
    • Invited
  • [Presentation] Approximate reconstruction of unknown functions by aninterpolation of values

    • Author(s)
      岡田 正己
    • Organizer
      北京師範大学 調和解析セミナー
    • Place of Presentation
      中国 北京 北京師範大学
    • Related Report
      2013 Research-status Report
    • Invited
  • [Presentation] 2次元近似サンプリング定理に向けて 不規則配置の場合

    • Author(s)
      岡田 正己
    • Organizer
      日本数学会 2014年度年会
    • Place of Presentation
      学習院大学
    • Related Report
      2013 Research-status Report

URL: 

Published: 2013-05-31   Modified: 2019-07-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi