Studies on two dimensional critical stochastic process by exactly solvable models and field theory
Project/Area Number |
24540393
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Mathematical physics/Fundamental condensed matter physics
|
Research Institution | The University of Tokyo |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
茂木 康平 東京海洋大学, 海洋科学技術研究科, 助教 (30583033)
|
Project Period (FY) |
2012-04-01 – 2016-03-31
|
Project Status |
Completed (Fiscal Year 2015)
|
Budget Amount *help |
¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2015: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2014: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2013: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2012: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
|
Keywords | 確率過程 / 臨界現象 / シュラム・レヴナー発展 / 共形場理論 / 可解模型 / 可積分系 / グロタンディーク多項式 / K理論 / Schramm-Loewner発展 / コセット構成 / パラフェルミオン模型 / 対称多項式 / ソリトン / SLE / 非平衡系 / 厳密解 / 確率的レーブナー方程式 / ベーテ仮説 |
Outline of Final Research Achievements |
Random fractals are a geometric structure universally appearing in the critical phenomena. Applying the Schramm-Loewner evolution, we have investigated the structure of random fractals observed in the two dimensional critical phenomena. Furthermore, some relation between solvable models and geometry has been studied. Namely, we have found that some integrable models are related to the K theory defined on complex manifolds.
|
Report
(5 results)
Research Products
(34 results)