Study of vortex motions for a generalized two-dimensional fluid system using point-vortex model
Project/Area Number |
24540472
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Meteorology/Physical oceanography/Hydrology
|
Research Institution | Kobe University |
Principal Investigator |
IWAYAMA Takahiro 神戸大学, 理学(系)研究科(研究院), 准教授 (10284598)
|
Co-Investigator(Renkei-kenkyūsha) |
WATANABE Takeshi 名古屋工業大学, 大学院工学研究科, 准教授 (30345946)
YAMASAKI Kazuhito 神戸大学, 大学院理学研究科, 講師 (20335417)
|
Research Collaborator |
SUEYOSHI Masakazu
MURAKAMI Shinya 神戸大学, 大学院理学研究科, 研究員
|
Project Period (FY) |
2012-04-01 – 2015-03-31
|
Project Status |
Completed (Fiscal Year 2014)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2014: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2013: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2012: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
|
Keywords | 一般化された2次元流体 / 2次元乱流 / 平行流の線形安定性 / ケルビン・ヘルムホルツ不安定 / 赤外領域スペクトル / 渦粘性 / 渦減衰準正規マルコフ化完結近似 / 平行流の安定性 / 渦列の安定性 / Kelvin-Helmholtz不安定 |
Outline of Final Research Achievements |
Linear stability of parallel shear flows and turbulent properties of a generalized two-dimensional fluid system were investigated theoretically and numerically. We derived a sufficient condition for stability of parallel shear flows and solved the so-called Kelvin-Helmholtz instability problem. Furthermore, using an asymptotic analysis of Eddy Damped Quasi-Normal Markovianized equation for a generalized two-dimensional fluid system, we predicted the existence of a universal spectrum in the infrared range and the anomalous form of the eddy viscosity. Those results were verified by direct numerical simulations of the governing equation for a generalized two-dimensional fluid system.
|
Report
(4 results)
Research Products
(19 results)