Building of the equation predict an optimal condition for drug analysis in biological sample
Project/Area Number |
24590850
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Legal medicine
|
Research Institution | The University of Tokyo |
Principal Investigator |
SAKA Kanju 東京大学, 医学(系)研究科(研究院), 技術専門職員 (30447388)
|
Co-Investigator(Renkei-kenkyūsha) |
YOSHIDA Ken-ichi 東京医科大学, 医学科, 教授 (40166947)
SHINTANI Kaori (ISHIDA Kaori) 京都府立医科大学, 大学院医学研究科, 准教授 (50345047)
|
Project Period (FY) |
2012-04-01 – 2015-03-31
|
Project Status |
Completed (Fiscal Year 2014)
|
Budget Amount *help |
¥5,330,000 (Direct Cost: ¥4,100,000、Indirect Cost: ¥1,230,000)
Fiscal Year 2014: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2013: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2012: ¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
|
Keywords | 薬毒物分析 / 定量的構造物性(活性)相関 / 予測モデル / 法医学 / 生体試料 / 液-液抽出 / 回収率 / 構造物性相関 |
Outline of Final Research Achievements |
We developed the predictive model for the phenomenon "matrix enhancement effect" in gas chromatography-mass spectrometry. The model was built using quantitative structure-property relationship (QSPR). The predictive equation allows the matrix-effect prediction without experimental measurements. In addition, the parameters such as "the number of H-bond donors" and "molecular volume" were found to be significant in this phenomenon.
|
Report
(4 results)
Research Products
(13 results)