• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study of cusp singularities by the theory of Groebner basis

Research Project

Project/Area Number 24654003
Research Category

Grant-in-Aid for Challenging Exploratory Research

Allocation TypeMulti-year Fund
Research Field Algebra
Research InstitutionTohoku University

Principal Investigator

ISHIDA Masanori  東北大学, 理学(系)研究科(研究院), 教授 (30124548)

Project Period (FY) 2012-04-01 – 2015-03-31
Project Status Completed (Fiscal Year 2014)
Budget Amount *help
¥3,510,000 (Direct Cost: ¥2,700,000、Indirect Cost: ¥810,000)
Fiscal Year 2014: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2013: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2012: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Keywords代数幾何学 / 代数多様体 / トーリック多様体 / カスプ特異点 / 鏡映群 / グレブナー基底
Outline of Final Research Achievements

We studied on toric type cusp singularities with the method of Groebner basis. In particular, we proved that cusp singularities are constructed over any field as noetherian complete local rings. We can define the leading terms ideal for an ideal of the local ring, and use it for comparing ideals similarly as the case of the polynomial ring.
In order to generalize and construct cusp singularities, we defined quasi-polyhedral sets and studied some fundamental properties and examples with the action of reflection groups.

Report

(4 results)
  • 2014 Annual Research Report   Final Research Report ( PDF )
  • 2013 Research-status Report
  • 2012 Research-status Report
  • Research Products

    (6 results)

All 2014 2013 Other

All Journal Article (1 results) (of which Peer Reviewed: 1 results) Presentation (5 results) (of which Invited: 5 results)

  • [Journal Article] The moduli space of Catanese-Ciliberto-Ishida surface2013

    • Author(s)
      Masanori Ishida
    • Journal Title

      Osaka J. Math.

      Volume: 50 Pages: 115-133

    • NAID

      120005986476

    • Related Report
      2013 Research-status Report
    • Peer Reviewed
  • [Presentation] Cusp singularities and discrete groups generated by reflections2014

    • Author(s)
      石田 正典
    • Organizer
      RIMS 研究集会 Kyoto Workshop``Algebraic Varieties and Automorphism Group''
    • Place of Presentation
      京都大学数理解析研究所
    • Year and Date
      2014-07-07
    • Related Report
      2014 Annual Research Report
    • Invited
  • [Presentation] カスプ特異点を記述する形式扇の導入2014

    • Author(s)
      石田正典
    • Organizer
      第 2 回杜の都代数幾何学研究集会
    • Place of Presentation
      東北大学大学院理学研究科
    • Related Report
      2013 Research-status Report
    • Invited
  • [Presentation] 可換環としてのトーリック型カスプ特異点

    • Author(s)
      石田 正典
    • Organizer
      代数幾何学城崎シンポジウム
    • Place of Presentation
      兵庫県城崎大会議館
    • Related Report
      2012 Research-status Report
    • Invited
  • [Presentation] カスプ特異点を定義する扇について

    • Author(s)
      石田 正典
    • Organizer
      杜の都代数幾何学研究集会
    • Place of Presentation
      東北大学大学院理学研究科
    • Related Report
      2012 Research-status Report
    • Invited
  • [Presentation] カスプ特異点とグレブナー基底

    • Author(s)
      石田 正典
    • Organizer
      第 11 回アフィン代数幾何学研究集会
    • Place of Presentation
      関西学院大学大阪梅田キャンパス
    • Related Report
      2012 Research-status Report
    • Invited

URL: 

Published: 2013-05-31   Modified: 2019-07-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi