Turing's Diffusion-Driven-Instability Revisited-from a view point of global structure of solution sets
Project/Area Number |
24654037
|
Research Category |
Grant-in-Aid for Challenging Exploratory Research
|
Allocation Type | Single-year Grants |
Research Field |
Global analysis
|
Research Institution | Tohoku University |
Principal Investigator |
TAKAGI Izumi 東北大学, 理学(系)研究科(研究院), 教授 (40154744)
|
Project Period (FY) |
2012-04-01 – 2014-03-31
|
Project Status |
Completed (Fiscal Year 2013)
|
Budget Amount *help |
¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Fiscal Year 2013: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2012: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
|
Keywords | 反応拡散系 / 拡散誘導不安定化 / パターン形成 / 定常解集合の大域構造 / 定常解の分岐 / 特異摂動解 / 大域的構造 |
Research Abstract |
To explain how a spatial structure is autonomously formed in the embryogenesis, Turing proposed the notion of "Diffusion-Driven-Instability" (DDI, for short), which says that when two chemicals with different diffusion rates react each other, spatially homogeneous states may be destabilized and nontrivial spatial structure emerges as a result. Mathematically, this is considered as bifurcation of nonconstant steady-state solutions from a constant stationary solution. In this project we showed patterns can be formed without bifurcation from a constant stationary solution, and proposed a new interpretation of Turing's DDI.
|
Report
(3 results)
Research Products
(11 results)