Asymptotic analysis of statistical computation methods for hidden Markov models
Project/Area Number |
24740062
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Multi-year Fund |
Research Field |
General mathematics (including Probability theory/Statistical mathematics)
|
Research Institution | Osaka University |
Principal Investigator |
Kamatani Kengo 大阪大学, 基礎工学研究科, 講師 (00569767)
|
Project Period (FY) |
2012-04-01 – 2016-03-31
|
Project Status |
Completed (Fiscal Year 2015)
|
Budget Amount *help |
¥3,510,000 (Direct Cost: ¥2,700,000、Indirect Cost: ¥810,000)
Fiscal Year 2014: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2013: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2012: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
|
Keywords | ベイズ統計 / モンテカルロ / 漸近理論 / 高次元解析 / 複雑モデル / 大規模データ / Markov chain / Bayesian Statistics / Monte Carlo / モンテカルロ法 / 数理統計学 / 確率過程 / 統計数理 / マルコフ連鎖 / ベイズ統計学 / 隠れマルコフモデル |
Outline of Final Research Achievements |
For the project, I performed analysis on (a) sequential monte carlo methods and (b) markov chain monte carlo (MCMC) methods for high-dimensional complicated models. For (a), we proposed (a-1) efficient strategy for high-dimensional state space models, and (a-2) ensemble strategy with multi-level monte carlo. For (b) we proposed a scale-free MCMC and analysed its performance via high-dimensional asymptotic and ergodicity analysis.
|
Report
(5 results)
Research Products
(30 results)
-
-
-
-
-
[Journal Article] The yuima project: A computational framework for simulation and inference of stochastic differential equations.2014
Author(s)
Alexandre Brouste, Masaaki Fukasawa, Hideitsu Hino, Stefano M. Iacus, Kengo Kamatani, Yuta Koike, Hiroki Masuda, Ryosuke Nomura, Teppei Ogihara, Yasutaka Shimuzu, Masayuki Uchida, and Nakahiro Yoshida.
-
Journal Title
Journal of Statistical Software
Volume: 57(4)
Pages: 1-51
Related Report
Peer Reviewed
-
-
[Journal Article] Yuima project : a computational framework for simulation and inference of stochastic differential equations, journal of statistical software.2014
Author(s)
A. Brouste, M. Fukasawa, H. Hino, S. Iacus, K. Kamatani, Y. Koike, H. Masuda, R. Nomura, Y. Shimuzu, M. Uchida, and N. Yoshida.
-
Journal Title
Journal of Statistical Software
Volume: 印刷中
Related Report
Peer Reviewed
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-