Utility of an Artificial Neural Network for Prediction of Survival in patients with Esophageal Cancer treated with Radiotherapy
Project/Area Number |
24791313
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Multi-year Fund |
Research Field |
Radiation science
|
Research Institution | Kyushu University |
Principal Investigator |
|
Project Period (FY) |
2012-04-01 – 2015-03-31
|
Project Status |
Completed (Fiscal Year 2014)
|
Budget Amount *help |
¥3,510,000 (Direct Cost: ¥2,700,000、Indirect Cost: ¥810,000)
Fiscal Year 2013: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2012: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
|
Keywords | 食道癌 / 放射線治療 / 放射線腫瘍学 / ニューラルネットワーク / 人口ニューラルネットワーク / 化学放射線療法 / 人工ニューラルネットワーク |
Outline of Final Research Achievements |
We constructed the ANN model to be useful to predict tumor response and survival in patients with esophageal cancer treated with radiotherapy. This ANN model could be used for determination of an optimal treatment strategy for esophageal cancer.
|
Report
(4 results)
Research Products
(3 results)
-
[Journal Article] Prediction of outcome with FDG-PET in definitive chemoradiotherapy for esophageal cancer2013
Author(s)
Kazushige ATSUMI, K. NAKAMURA, K. ABE, M. HIRAKAWA, Y. SHIOYAMA, T. SASAKI, S. BABA, T. ISODA, S. OHGA, T.YOSHITAKE, M. SHINOTO, K. ASAI and Hiroshi HONDA.
-
Journal Title
Journal of Radiation Research
Volume: 21
Issue: 5
Pages: 1-9
DOI
Related Report
Peer Reviewed
-
-