• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Twisted cohomology of mapping class groups with infinite dimensional coefficients and rational cohomology of Torelli groups

Research Project

Project/Area Number 24840023
Research Category

Grant-in-Aid for Research Activity Start-up

Allocation TypeSingle-year Grants
Research Field Geometry
Research InstitutionGifu University

Principal Investigator

SATO Masatoshi  岐阜大学, 教育学部, 助教 (10632010)

Project Period (FY) 2012-08-31 – 2014-03-31
Project Status Completed (Fiscal Year 2013)
Budget Amount *help
¥2,990,000 (Direct Cost: ¥2,300,000、Indirect Cost: ¥690,000)
Fiscal Year 2013: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2012: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Keywords写像類群 / 群ホモロジー / トレリ群
Research Abstract

The Torelli group is a subgroup of the mapping class group of a closed surface, and is defined as the kernel of the action of the mapping class group to the integral first homology group of the surface. The purpose of this research is to determine whether the Morita-Mumford classes vanish in the Torelli group or not. We cannot determine it, however, we showed that most of them vanish in some subgroup of the Torelli group.
The level 2 mapping class group is the subgroup of the mapping class group defined as the kernel of the action to the first homology group of the surface with coefficient in the cyclic group of order 2. We gave a minimal generating set of this group, and determined its abelianization, and posted a preprint.

Report

(3 results)
  • 2013 Annual Research Report   Final Research Report ( PDF )
  • 2012 Annual Research Report
  • Research Products

    (12 results)

All 2014 2013 2012 Other

All Journal Article (1 results) (of which Peer Reviewed: 1 results) Presentation (9 results) (of which Invited: 4 results) Remarks (2 results)

  • [Journal Article] On stable commutator length in hyperelliptic mapping class groups2014

    • Author(s)
      Danny Calegari, Naoyuki Monden, Masatoshi Sato
    • Journal Title

      Pacific Journal of Mathematics

      Volume: 未定

    • Related Report
      2013 Annual Research Report
    • Peer Reviewed
  • [Presentation] A minimal generating set of the level -2 mapping class group of a non-orientable surface2014

    • Author(s)
      佐藤正寿
    • Organizer
      離散群と双曲空間の複素解析とトポロジー
    • Place of Presentation
      京都大学数理解析研究所
    • Year and Date
      2014-01-22
    • Related Report
      2013 Final Research Report
  • [Presentation] The mod 2 Johnson homomorphism and the abelianization of the level 2 mapping class groups of a non-orientable surface2013

    • Author(s)
      佐藤正寿, 廣瀬進
    • Organizer
      リーマン面に関連する位相幾何学
    • Place of Presentation
      東京大学
    • Year and Date
      2013-08-26
    • Related Report
      2013 Final Research Report
  • [Presentation] The mod 2 Johnson homomorphism and the abelianization of the level 2 mapping class groups of a non-orientable surface2013

    • Author(s)
      M. Sato, and S. Hirose
    • Organizer
      Workshop : Johnson homomorphisms
    • Place of Presentation
      University of Tokyo
    • Year and Date
      2013-06-05
    • Related Report
      2013 Final Research Report
  • [Presentation] 点付き球面の写像類群の安定交換子長について2012

    • Author(s)
      佐藤正寿
    • Organizer
      リーマン面に関連する位相幾何学
    • Place of Presentation
      東京大学
    • Related Report
      2012 Annual Research Report
  • [Presentation] On stable commutator length in the mapping class groups of punctured spheres2012

    • Author(s)
      佐藤正寿
    • Organizer
      Aspects of representation theory in low-dimensional topology and 3-dimensional invariants
    • Place of Presentation
      hotel club Vacanciel(フランス)
    • Related Report
      2012 Annual Research Report
    • Invited
  • [Presentation] 向き付け不可能閉曲面のレベル2写像類群のアーベル化について2012

    • Author(s)
      廣瀬進
    • Organizer
      低次元トポロジーセミナー
    • Place of Presentation
      大阪大学
    • Related Report
      2012 Annual Research Report
    • Invited
  • [Presentation] The mod 2 Johnson homomorphism and the abelianization of the level 2 mapping class groups of a non-orientable surface

    • Author(s)
      Hirose Susumu, Masatoshi Sato
    • Organizer
      Johnson homomorphisms
    • Place of Presentation
      東京大学
    • Related Report
      2013 Annual Research Report
    • Invited
  • [Presentation] The mod 2 Johnson homomorphism and the abelianization of the level 2 mapping class groups of a non-orientable surface

    • Author(s)
      廣瀬進, 佐藤正寿
    • Organizer
      リーマン面に関連する位相幾何学
    • Place of Presentation
      東京大学
    • Related Report
      2013 Annual Research Report
  • [Presentation] A minimal generating set of the level 2 mapping class group of a non-orientable surface

    • Author(s)
      佐藤正寿
    • Organizer
      離散群と双曲空間の複素解析とトポロジー
    • Place of Presentation
      京都大学数理解析研究所
    • Related Report
      2013 Annual Research Report
    • Invited
  • [Remarks]

    • URL

      http://www1.gifu-u.ac.jp/~msato/

    • Related Report
      2013 Final Research Report
  • [Remarks] 佐藤正寿のホームぺージ

    • URL

      http://www1.gifu-u.ac.jp/~msato/

    • Related Report
      2013 Annual Research Report

URL: 

Published: 2012-11-27   Modified: 2019-07-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi