• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Reliable Tensor-Network Fusion Approach to Medical Informatics: Novel Techniques and Benchmarks

Research Project

Project/Area Number 24K03005
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 61030:Intelligent informatics-related
Basic Section 60030:Statistical science-related
Sections That Are Subject to Joint Review: Basic Section60030:Statistical science-related , Basic Section61030:Intelligent informatics-related
Research InstitutionInstitute of Physical and Chemical Research

Principal Investigator

李 超  国立研究開発法人理化学研究所, 革新知能統合研究センター, 研究員 (10869837)

Co-Investigator(Kenkyū-buntansha) 孫 哲  順天堂大学, 健康データサイエンス学部, 助教 (40804662)
ZHAO QIBIN  国立研究開発法人理化学研究所, 革新知能統合研究センター, チームリーダー (30599618)
青木 茂樹  順天堂大学, 大学院医学研究科, 教授 (80222470)
Project Period (FY) 2024-04-01 – 2028-03-31
Project Status Granted (Fiscal Year 2024)
Budget Amount *help
¥18,720,000 (Direct Cost: ¥14,400,000、Indirect Cost: ¥4,320,000)
Fiscal Year 2027: ¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2026: ¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2025: ¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2024: ¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Keywordsmulti-modal learning / tensor fusion
Outline of Research at the Start

We create a correlation-aware tensor fusion network, enabling the network to learn multi-modal structures directly; explore selective inference within the TFN framework to bolster the reliability of our data fusion methods; and introduce a new multi-modal, multi-task medical benchmark dataset.

URL: 

Published: 2024-04-11   Modified: 2024-10-24  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi