• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Probabilistic arrival time prediction algorithm using a-priori knowledge and machine learning to enable sustainable air traffic management

Research Project

Project/Area Number 24K07723
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 22050:Civil engineering plan and transportation engineering-related
Research InstitutionJapan Aerospace EXploration Agency

Principal Investigator

アンドレエバ森 アドリアナ  国立研究開発法人宇宙航空研究開発機構, 航空技術部門, 主任研究開発員 (30747499)

Co-Investigator(Kenkyū-buntansha) 上野 誠也  国立研究開発法人宇宙航空研究開発機構, 航空技術部門, 主幹研究開発員 (60203460)
Project Period (FY) 2024-04-01 – 2027-03-31
Project Status Granted (Fiscal Year 2024)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2026: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2025: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2024: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywordstime of arrival / probabilistic prediction / departures
Outline of Research at the Start

This research combines flight modeling and data-centric algorithms to increase the prediction accuracy of arrival times by focusing on the departure flight phases, and provide a probabilistic estimate of how accurate the estimation is to traffic controllers so that they plan for optimal management.

URL: 

Published: 2024-04-05   Modified: 2024-06-24  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi