• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

多様な出力データに対応可能な不変学習のパラメータ選択法の構築

Research Project

Project/Area Number 24K20750
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 60030:Statistical science-related
Research InstitutionKyushu University

Principal Investigator

豊田 祥史  九州大学, システム情報科学研究院, 助教 (10984718)

Project Period (FY) 2024-04-01 – 2028-03-31
Project Status Granted (Fiscal Year 2024)
Budget Amount *help
¥4,810,000 (Direct Cost: ¥3,700,000、Indirect Cost: ¥1,110,000)
Fiscal Year 2027: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2026: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2025: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2024: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Keywords機械学習 / 統計学 / データサイエンス
Outline of Research at the Start

深層学習によるデータからの学習法の急速な発展により, 高性能な人工知能の実現が可能となっている. しかし, 深層学習により学習された人工知能は, 学習データを生起した分布とは異なる分布から生起されたデータに対しては正しい推論ができないことが知られている. この問題の有力な解決法として,不変学習という方法論が近年注目を集めているが, 学習時に定めるべき恣意性のあるパラメータの選択が非常に困難であることがボトルネックとなり, その性能は十分な水準に達していない現状である. 本研究では, 連続, 時系列, 関数データなど多様な出力データを対象とした不変学習のパラメータ選択法の確立を目指す.

URL: 

Published: 2024-04-05   Modified: 2024-06-24  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi