Budget Amount *help |
¥4,810,000 (Direct Cost: ¥3,700,000、Indirect Cost: ¥1,110,000)
Fiscal Year 2027: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2026: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2025: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2024: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
|
Outline of Research at the Start |
深層学習によるデータからの学習法の急速な発展により, 高性能な人工知能の実現が可能となっている. しかし, 深層学習により学習された人工知能は, 学習データを生起した分布とは異なる分布から生起されたデータに対しては正しい推論ができないことが知られている. この問題の有力な解決法として,不変学習という方法論が近年注目を集めているが, 学習時に定めるべき恣意性のあるパラメータの選択が非常に困難であることがボトルネックとなり, その性能は十分な水準に達していない現状である. 本研究では, 連続, 時系列, 関数データなど多様な出力データを対象とした不変学習のパラメータ選択法の確立を目指す.
|