Co-Investigator(Kenkyū-buntansha) |
藤井 俊 金沢工業大学, 基礎教育部, 講師 (20386618)
松野 一夫 津田塾大学, 学芸学部, 教授 (40332936)
八森 祥隆 東京理科大学, 理工学部数学科, 准教授 (50433743)
田中 孝明 慶應義塾大学, 理工学部(矢上), 准教授 (60306850)
小林 真一 九州大学, 数理学研究院, 教授 (80362226)
|
Budget Amount *help |
¥38,610,000 (Direct Cost: ¥29,700,000、Indirect Cost: ¥8,910,000)
Fiscal Year 2017: ¥8,840,000 (Direct Cost: ¥6,800,000、Indirect Cost: ¥2,040,000)
Fiscal Year 2016: ¥7,150,000 (Direct Cost: ¥5,500,000、Indirect Cost: ¥1,650,000)
Fiscal Year 2015: ¥7,280,000 (Direct Cost: ¥5,600,000、Indirect Cost: ¥1,680,000)
Fiscal Year 2014: ¥7,280,000 (Direct Cost: ¥5,600,000、Indirect Cost: ¥1,680,000)
Fiscal Year 2013: ¥8,060,000 (Direct Cost: ¥6,200,000、Indirect Cost: ¥1,860,000)
|
Outline of Final Research Achievements |
We constructed a new theory on refinement and generalization of Stark conjecture. We discovered the arithmetic meaning of the ideal which appears in Rubin-Stark conjecture, and the relation between Rubin-Stark elements and zeta elements in equivariant Tamagawa number conjecture. We defined Stark elements to arbitrary integer points of zeta functions, and generalized the refined Stark conjecture to these generalized Stark elements. We found that these generalized elements form p-adic families. We determined the Fitting ideal of (non-modified) classical Iwasawa modules, and gave a complete answer to the problem on the Fitting ideal related to the Iwasawa theoretic version of Brumer Stark conjecture.
|