• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study on predictive discrimination of sound data based on spatial-temporal Gaussian processes

Research Project

Project/Area Number 25280067
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypePartial Multi-year Fund
Section一般
Research Field Perceptual information processing
Research InstitutionThe Institute of Statistical Mathematics

Principal Investigator

Matsui Tomoko  統計数理研究所, モデリング研究系, 教授 (10370090)

Co-Investigator(Kenkyū-buntansha) TAKEDA KAZUYA  名古屋大学, 情報科学研究科, 教授 (20273295)
MARKOV KONSTANTIN  会津大学, コンピュータ理工学部, 准教授 (80394998)
Co-Investigator(Renkei-kenkyūsha) UENO GENTA  統計数理研究所, モデリング研究系, 准教授 (40370093)
Research Collaborator PETERS GARETH W.  University College London, UK, 統計学科, 講師 (90763061)
IDO NEVAT  A*STAR, Singapore・Institute for Infocom Research(12R), チームリーダー
Project Period (FY) 2013-04-01 – 2016-03-31
Project Status Completed (Fiscal Year 2015)
Budget Amount *help
¥16,900,000 (Direct Cost: ¥13,000,000、Indirect Cost: ¥3,900,000)
Fiscal Year 2015: ¥5,460,000 (Direct Cost: ¥4,200,000、Indirect Cost: ¥1,260,000)
Fiscal Year 2014: ¥4,810,000 (Direct Cost: ¥3,700,000、Indirect Cost: ¥1,110,000)
Fiscal Year 2013: ¥6,630,000 (Direct Cost: ¥5,100,000、Indirect Cost: ¥1,530,000)
Keywordsガウス過程 / 時空間モデリング / 音響信号処理 / 音楽情報処理
Outline of Final Research Achievements

We newly developed a general-purpose software “Monte Carlo Dynamic Classifier(MCDC)tool” for classification and regression with spatial-temporal Gaussian processes. In MCDC tool, state-space models are utilized and the state and observation functions are designed with Gaussian processes.
For modeling of acoustic space with spatial-temporal Gaussian processes, we designed a novel kernel function based on the wave equation in which the wave phase information was taken into account. The effectiveness of the kernel function was experimentally shown through comparison with the conventional method. Moreover, we investigated new methods for music genre classification and music emotion recognition using spatial-temporal Gaussian processes and experimentally showed that the proposed methods outperformed the conventional methods.

Report

(4 results)
  • 2015 Annual Research Report   Final Research Report ( PDF )
  • 2014 Annual Research Report
  • 2013 Annual Research Report
  • Research Products

    (17 results)

All 2015 2014 2013 Other

All Int'l Joint Research (2 results) Journal Article (3 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 3 results,  Open Access: 1 results) Presentation (10 results) Book (1 results) Remarks (1 results)

  • [Int'l Joint Research] ロンドン大学(英国)

    • Related Report
      2015 Annual Research Report
  • [Int'l Joint Research] Telecom Lille(フランス)

    • Related Report
      2015 Annual Research Report
  • [Journal Article] Dynamic Speech Emotion Recognition with State-Space Models2015

    • Author(s)
      Konstantin Markov, Tomoko Matsui, Francois Septier, and Gareth. W. Peters
    • Journal Title

      Signal Processing Conference (EUSIPCO), 2015 23rd European

      Volume: 1 Pages: 2077-2081

    • DOI

      10.1109/eusipco.2015.7362750

    • Related Report
      2015 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Music Genre and Emotion Recognition Using Gaussian Processes2014

    • Author(s)
      Konstantin Markov and Tomoko Matsui
    • Journal Title

      Access, IEEE

      Volume: 2 Pages: 688-697

    • DOI

      10.1109/access.2014.2333095

    • Related Report
      2014 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] High level feature extraction for the self-taught learning algorithm2013

    • Author(s)
      Konstantin Markov and Tomoko Matsui
    • Journal Title

      EURASIP Journal on Audio, Speech, and Music Processing

      Volume: 6 Issue: 1 Pages: 1-12

    • DOI

      10.1186/1687-4722-2013-6

    • Related Report
      2013 Annual Research Report
    • Peer Reviewed
  • [Presentation] ガウス過程を用いた楽器音の統計的雑音抑圧2015

    • Author(s)
      足立悠輔、西野隆典、松井知子、武田一哉
    • Organizer
      日本音響学会2015年春季研究発表会
    • Place of Presentation
      東京、中央大学
    • Year and Date
      2015-03-16
    • Related Report
      2014 Annual Research Report
  • [Presentation] Dynamic music emotion recognition using state-space models2014

    • Author(s)
      Konstantin Markov and Tomoko Matsui
    • Organizer
      MediaEval2014
    • Place of Presentation
      スペイン、バルセロナ
    • Year and Date
      2014-10-16
    • Related Report
      2014 Annual Research Report
  • [Presentation] ガウス過程を用いた楽器音の波形補間2014

    • Author(s)
      足立悠輔、西野隆典、武田一哉
    • Organizer
      日本音響学会2014年秋季研究発表会
    • Place of Presentation
      北海道、北海学園大学
    • Year and Date
      2014-09-04
    • Related Report
      2014 Annual Research Report
  • [Presentation] Modeling Room Impulse Response via Composites of Spatial-Temporal GP's2013

    • Author(s)
      Tatsuya Komatsu, Gareth W. Peters, Tomoko Matsui, Ido Nevat, and Kazuya Takeda
    • Organizer
      The 21st International Congress on Acoustics
    • Place of Presentation
      Montreal, Canada
    • Related Report
      2013 Annual Research Report
  • [Presentation] Modeling Head-Related Transfer Functions via Spatial-Temporal Gaussian Process2013

    • Author(s)
      Tatsuya Komatsu, Takanori Nishino, Gareth W. Peters, Tomoko Matsui and Kazuya Takeda
    • Organizer
      IEEE International Conference on Acoustics, Speech, and Signal Processing
    • Place of Presentation
      Vancouver, Canada
    • Related Report
      2013 Annual Research Report
  • [Presentation] ガウス過程による頭部伝達関数の補間2013

    • Author(s)
      小松達也, 西野隆典, 松井知子, 武田一哉
    • Organizer
      日本音響学会2013年秋季研究発表会
    • Place of Presentation
      豊橋技術科学大学
    • Related Report
      2013 Annual Research Report
  • [Presentation] Music Genre Classification using Gaussian Process Models2013

    • Author(s)
      Konstantin Markov and Tomoko Matsui
    • Organizer
      IEEE International Workshop on Machine Learning for Signal Processing
    • Place of Presentation
      Southampton, UK
    • Related Report
      2013 Annual Research Report
  • [Presentation] Music Emotion Recognition using Gaussian Processes2013

    • Author(s)
      Konstantin Markov, Motofumi Iwata and Tomoko Matsui
    • Organizer
      MediaEval 2013 Workshop
    • Place of Presentation
      Barcelona, Spain
    • Related Report
      2013 Annual Research Report
  • [Presentation] Gaussian Processes based Music Information Retrieval2013

    • Author(s)
      Konstantin Markov
    • Organizer
      STM2013
    • Place of Presentation
      統計数理研究所
    • Related Report
      2013 Annual Research Report
  • [Presentation] Modeling Head-Related Transfer Functions via Spatial-Temporal Gaussian Process2013

    • Author(s)
      Kazuya Takeda
    • Organizer
      STM2013
    • Place of Presentation
      統計数理研究所
    • Related Report
      2013 Annual Research Report
  • [Book] Modern Methodology and Applications in Spatial-Temporal Modeling: Chapter 3 Speech and Music Emotion Recognition Using Gaussian Processes2015

    • Author(s)
      Konstantin Markov and Tomoko Matsui
    • Total Pages
      111
    • Publisher
      Springer
    • Related Report
      2015 Annual Research Report
  • [Remarks] Monte Carlo Dynamic Classifier

    • URL

      http://www.ismvideo.org/NDE0UP/MCDCtool/index.html

    • Related Report
      2015 Annual Research Report

URL: 

Published: 2013-05-21   Modified: 2019-07-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi