Project/Area Number |
25282175
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Partial Multi-year Fund |
Section | 一般 |
Research Field |
Rehabilitation science/Welfare engineering
|
Research Institution | Tokyo Medical and Dental University |
Principal Investigator |
Miho Miyajima 東京医科歯科大学, 医歯(薬)学総合研究科, 助教 (70616177)
|
Co-Investigator(Kenkyū-buntansha) |
藤原 幸一 京都大学, 情報学研究科, 助教 (10642514)
山川 俊貴 熊本大学, 学内共同利用施設等, 助教 (60510419)
渡辺 裕貴 国立研究開発法人国立精神・神経医療研究センター, その他部局等, その他 (00117558)
|
Co-Investigator(Renkei-kenkyūsha) |
KANO Manabu 京都大学, 情報学研究科, 教授 (60510419)
MATSUURA Masato 東京医科歯科大学, 名誉教授 (60134673)
MAEHARA Taketoshi 東京医科歯科大学, 医歯学総合研究科, 教授 (40211560)
|
Research Collaborator |
INAJI Motoki 東京医科歯科大学, 医学部附属病院, 講師 (00422486)
SASANO Tetsuo 東京医科歯科大学, 大学院保健衛生学研究科, 准教授 (00466898)
WATANABE Satsuki 国立精神・神経医療研究センター病院, 精神科, 医師 (30796016)
SAKUMA Taeko 東京医科大学, 医学部, 助教 (70419026)
JIN Kazutaka 東北大学, 医学系研究科, 教授 (20436091)
NAKAZATO Nobukazu 東北大学, 医学系研究科, 教授 (80207753)
|
Project Period (FY) |
2013-04-01 – 2017-03-31
|
Project Status |
Completed (Fiscal Year 2016)
|
Budget Amount *help |
¥18,460,000 (Direct Cost: ¥14,200,000、Indirect Cost: ¥4,260,000)
Fiscal Year 2016: ¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2015: ¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2014: ¥3,510,000 (Direct Cost: ¥2,700,000、Indirect Cost: ¥810,000)
Fiscal Year 2013: ¥5,980,000 (Direct Cost: ¥4,600,000、Indirect Cost: ¥1,380,000)
|
Keywords | てんかん発作兆候検知 / 心拍変動解析(HRV) / ウェアラブルセンサ / 多変量統計的プロセス管理(MSPC) / 生活の質(QOL) / てんかん発作予測 / 心拍変動解析 / 多変量統計的プロセス管理 / ウェアラブル心拍計 / QoL向上 / Closed-loop型治療システム / 生活支援技術 / てんかん発作検知 / QoL向上 / 心拍変動解析(HRV analysis) |
Outline of Final Research Achievements |
Patients with intractable epilepsy suffer from accidents and injuries associated with epileptic seizures. To prevent the seizure-associated accidents and improve quality of life (QOL) of epileptic patients, the present work proposes a new real-time epileptic seizure prediction and alert system employing a wearable heart rate variability (HRV) telemeter and a smartphone. The R-R interval (RRI) data is stored into a smartphone via a Bluetooth wireless transmission. The smartphone application for epileptic seizure prediction detect peri-ictal status based on multivariate statistical process control (MSPC) for the HRV data and alert the patients and the caregivers to the seizure. The HRV-based seizure prediction algorithm demonstrated sensitivity of 91% for partial seizures, that is, competitive performance with electroencephalography (EEG)-based methods. The possibility of realizing a HRV-based epileptic seizure prediction system with high wearability was shown.
|