Information extraction from a large number of micro-sensory data without location attribute
Project/Area Number |
25330099
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Information network
|
Research Institution | Chiba University |
Principal Investigator |
Shioda Shigeo 千葉大学, 工学(系)研究科(研究院), 教授 (70334167)
|
Project Period (FY) |
2013-04-01 – 2016-03-31
|
Project Status |
Completed (Fiscal Year 2015)
|
Budget Amount *help |
¥4,940,000 (Direct Cost: ¥3,800,000、Indirect Cost: ¥1,140,000)
Fiscal Year 2015: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2014: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Fiscal Year 2013: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
|
Keywords | センサ / 位置推定 / グラフ描画 / オンラインソーシャルネットワーク / ランダムウォーク / 対象物カウント / ユビキタス / 対象物数推定 / レンジフリー / センシング / 検出 / ランダムウォークサンプリング / 確率測度変換 / 最適化 / 対象物 |
Outline of Final Research Achievements |
Fundamental theories for extracting the meaningful information from a large number of micro-sensory data collected by numerous sensors located in real or virtual world are established, and their applications to various subjects are examined. Particular focus are put on the following subjects: (1) cooperative sensor localization based on inter-sensor distances,(2) cooperative sensor localization based on binary inter-sensor-distance information, (3) graph drawing method parameterized for varying the layout, (4) target object counting using binary proximity sensors via cluster identification,(5) random-walk-based biased sampling for data collection in on-line social networks.
|
Report
(4 results)
Research Products
(29 results)