• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

New Learning Rules for Hierarchical Neural Networks for Visual Pattern Recognition

Research Project

Project/Area Number 25330300
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Soft computing
Research InstitutionFuzzy Logic Systems Institute

Principal Investigator

FUKUSHIMA KUNIHIKO  一般財団法人ファジィシステム研究所, 研究部, 特別研究員 (90218909)

Project Period (FY) 2013-04-01 – 2018-03-31
Project Status Completed (Fiscal Year 2017)
Budget Amount *help
¥4,810,000 (Direct Cost: ¥3,700,000、Indirect Cost: ¥1,110,000)
Fiscal Year 2017: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2016: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2015: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2014: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2013: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Keywords視覚パターン認識 / 多層神経回路 / deep CNN / ネオコグニトロン / 学習手法 / 内挿ベクトル法 / Add-if-Silent / margined WTA / 視覚情報処理 / Add-if-Silent則 / add-if-silent則 / 自己組織化
Outline of Final Research Achievements

We developed new learning rules for the neocognitron, which is a deep convolutional neural network for visual pattern recognition.
For training intermediate layers, the learning rule named AiS (Add-if-Silent) is used. Under the AiS, a new cell is generated and added to the network if all postsynaptic cells are silent in spite of non-silent presynaptic cells. Once a cell is generated, its input connections do not change any more. Thus the training process is very simple and does not require time-consuming repetitive calculation.
For training the deepest layer, we proposed a supervised learning rule called mWTA (margined Winner-Take-All). Every time when a training pattern is presented during the learning, if the result of classification by the WTA is an error, a new cell is generated. Here we put a certain amount of margin to the WTA. The mWTA produces a compact set of cells, with which a high recognition rate can be obtained with a small computational cost.

Report

(6 results)
  • 2017 Annual Research Report   Final Research Report ( PDF )
  • 2016 Research-status Report
  • 2015 Research-status Report
  • 2014 Research-status Report
  • 2013 Research-status Report
  • Research Products

    (37 results)

All 2018 2017 2016 2015 2014 2013 Other

All Journal Article (6 results) (of which Peer Reviewed: 3 results,  Acknowledgement Compliant: 1 results) Presentation (26 results) (of which Int'l Joint Research: 10 results,  Invited: 15 results) Book (1 results) Remarks (4 results)

  • [Journal Article] Margined winner-take-all: New learning rule for pattern recognition2018

    • Author(s)
      Fukushima Kunihiko
    • Journal Title

      Neural Networks

      Volume: 97 Pages: 152-161

    • DOI

      10.1016/j.neunet.2017.10.005

    • Related Report
      2017 Annual Research Report
    • Peer Reviewed
  • [Journal Article] ネオコグニトロンと一次視覚野(解説)2016

    • Author(s)
      福島邦彦
    • Journal Title

      Clinical Neuroscience

      Volume: 34 Pages: 892-895

    • Related Report
      2016 Research-status Report
  • [Journal Article] 視覚パターン認識とネオコグニトロン(解説)2016

    • Author(s)
      福島邦彦
    • Journal Title

      VISION (日本視覚学会誌)

      Volume: 29 Pages: 1-5

    • Related Report
      2016 Research-status Report
  • [Journal Article] ネオコグニトロン: deep convolutional neural network (解説)2015

    • Author(s)
      福島邦彦
    • Journal Title

      知能と情報 (日本知能情報ファジィ学会誌)

      Volume: 27 Pages: 115-125

    • Related Report
      2015 Research-status Report
    • Acknowledgement Compliant
  • [Journal Article] Online learning of feature detectors from natural images with the probabilistic WKL rule2014

    • Author(s)
      J. L'eveill'e, I. Hayashi, K. Fukushima
    • Journal Title

      JACIII (Journal of Advanced Computational Intelligence and Intelligent Informatics)

      Volume: 18 Pages: 672-681

    • Related Report
      2014 Research-status Report
    • Peer Reviewed
  • [Journal Article] Neocognitron trained by winner-kill-loser with triple threshold2014

    • Author(s)
      K. Fukushima, I. Hayashi, J. Leveille
    • Journal Title

      Neurocomputing

      Volume: 129 Pages: 78-84

    • DOI

      10.1016/j.neucom.2012.05.038

    • Related Report
      2013 Research-status Report
    • Peer Reviewed
  • [Presentation] Automatic detection of spine in CT image by U-Net2018

    • Author(s)
      M. Kamata, K. Fukushima, H. Shouno, I. Hayashi, M. Kikuchi
    • Organizer
      NCSP2018 (2018 RISP International Workshop on Nonlinear Circuits, Communications and Signal Processing)
    • Related Report
      2017 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Artificial vision by deep CNN neocognitron2018

    • Author(s)
      K. Fukushima
    • Organizer
      TDLW 2018 (Workshop on Deep Learning: Theory, Algorithms, and Applications)
    • Related Report
      2017 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] ネオコグニトロンと畳み込みニューラルネットワーク ― 頑強な視覚パターン認識を目指して2018

    • Author(s)
      福島邦彦
    • Organizer
      電子情報通信学会 東海支部 平成29年度専門講習会「ディープラーニングとその医用画像応用」
    • Related Report
      2017 Annual Research Report
    • Invited
  • [Presentation] U-NetによるCT画像における脊椎の自動検出2018

    • Author(s)
      鎌田理詩, 菊池眞之, 庄野逸, 林勲, 福島邦彦
    • Organizer
      電子情報通信学会 ニューロコンピューティング研究会
    • Related Report
      2017 Annual Research Report
  • [Presentation] 視覚パターン認識とネオコグニトロン2017

    • Author(s)
      福島邦彦
    • Organizer
      日本視覚学会 2017冬季大会
    • Place of Presentation
      NHK放送技術研究所(東京都)
    • Year and Date
      2017-01-18
    • Related Report
      2016 Research-status Report
    • Invited
  • [Presentation] Artificial vision by deep CNN neocognitron2017

    • Author(s)
      K. Fukushima
    • Organizer
      ELM 2017 (The 8th International Conference on Extreme Learning Machines)
    • Related Report
      2017 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] deep CNNネオコグニトロンと視覚情報処理2017

    • Author(s)
      福島邦彦
    • Organizer
      DICOMO 2017 (情報処理学会 マルティメディア,分散,強調とモバイル シンポジウム)
    • Related Report
      2017 Annual Research Report
    • Invited
  • [Presentation] ネオコグニトロンにおける中間素子数と認識性能との関係性2017

    • Author(s)
      毬山利貞, 福島邦彦, 遠藤覚, 松本渉
    • Organizer
      JNNS 2017 (第27回日本神経回路学会全国大会)
    • Related Report
      2017 Annual Research Report
  • [Presentation] 視覚の人工神経回路2017

    • Author(s)
      福島邦彦
    • Organizer
      日本知能情報ファジィ学会 しなやかな行動の脳工学研究会
    • Place of Presentation
      東京工科大学(東京都八王子市)
    • Related Report
      2016 Research-status Report
    • Invited
  • [Presentation] Artificial vision by deep CNN neocognitron2016

    • Author(s)
      K. Fukushima
    • Organizer
      NBNI 2016 (The 16th Japan-China-Korea Joint Workshop on Neurobiology and Neuroinformatics)
    • Place of Presentation
      Hong Kong, China
    • Year and Date
      2016-12-19
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Deep CNN neocognitron for visual pattern recognition2016

    • Author(s)
      K. Fukushima
    • Organizer
      ICONIP 2016 (The 23rd International Conference on Neural Information Processing)
    • Place of Presentation
      Kyoto, Japan
    • Year and Date
      2016-10-16
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] A deep neural network architecture using dimensionality reduction with sparse matrices2016

    • Author(s)
      W. Matsumoto, M. Hagiwara, P. T. Boufounos, K. Fukushima, T. Mariyama, Z. Xiongxin
    • Organizer
      ICONIP 2016 (The 23rd International Conference on Neural Information Processing)
    • Place of Presentation
      Kyoto, Japan
    • Year and Date
      2016-10-16
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research
  • [Presentation] Automatic design of neural network structures using AiS2016

    • Author(s)
      T. Mariyama, K. Fukushima, W. Matsumoto
    • Organizer
      ICONIP 2016 (The 23rd International Conference on Neural Information Processing)
    • Place of Presentation
      Kyoto, Japan
    • Year and Date
      2016-10-16
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research
  • [Presentation] Margined winner-take-all: new learning rule for pattern recognition2016

    • Author(s)
      K. Fukushima
    • Organizer
      IJCNN 2016 (2016 International Joint Conference on Neural Networks)
    • Place of Presentation
      Vancouver, Canada
    • Year and Date
      2016-07-25
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research
  • [Presentation] Deep CNNネオコグニトロンの学習2016

    • Author(s)
      福島邦彦
    • Organizer
      JSAI 2016 (第30回人工知能学会全国大会)
    • Place of Presentation
      北九州国際会議場
    • Year and Date
      2016-06-06
    • Related Report
      2016 Research-status Report
    • Invited
  • [Presentation] Deep CNNネオコグニトロンと視覚パターン認識2016

    • Author(s)
      福島邦彦
    • Organizer
      視覚科学技術コンソーシアム(VSAT)
    • Place of Presentation
      高知工科大学香美キャンパス
    • Related Report
      2016 Research-status Report
    • Invited
  • [Presentation] IWCcS 2015 (International Workshop on Community centric Systems)2015

    • Author(s)
      K. Fukushima
    • Organizer
      IWCcS 2015 (International Workshop on Community centric Systems)
    • Place of Presentation
      Toyo Metropolitan University, Hino, Tokyo, Japan
    • Year and Date
      2015-11-30
    • Related Report
      2015 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] ネオコグニトロンにおける識別率と細胞反応分布の関係について2015

    • Author(s)
      佐藤翔一郎,菊池眞之,福島邦彦,林勲,庄野逸
    • Organizer
      JNNS 2015 (日本神経回路学会全国大会)
    • Place of Presentation
      電気通信大学,東京
    • Year and Date
      2015-09-02
    • Related Report
      2015 Research-status Report
  • [Presentation] Deep Convolutional Network と視覚パターン認識2015

    • Author(s)
      福島邦彦
    • Organizer
      JNNS 2015 (日本神経回路学会全国大会)
    • Place of Presentation
      電気通信大学,東京
    • Year and Date
      2015-09-02
    • Related Report
      2015 Research-status Report
    • Invited
  • [Presentation] Deep convolutional network neocognitron: improved interpolating-vector2015

    • Author(s)
      K. Fukushima, H. Shouno
    • Organizer
      IJCNN 2015 (International Joint Conference on Neural Networks)
    • Place of Presentation
      Killarney, Ireland
    • Year and Date
      2015-07-12
    • Related Report
      2015 Research-status Report
    • Int'l Joint Research
  • [Presentation] 畳み込み型多層神経回路ネオコグニトロンとその発展2015

    • Author(s)
      福島邦彦
    • Organizer
      電子情報通信学会 ニューロコンピューティング研究会・情報論的学習理論と機械学習研究会
    • Place of Presentation
      電気通信大学,東京
    • Year and Date
      2015-06-23
    • Related Report
      2015 Research-status Report
    • Invited
  • [Presentation] Deep convolutional network ネオコグニトロンによる視覚パターン認識: その原理と学習手法2014

    • Author(s)
      福島邦彦
    • Organizer
      IBIS2014 (第17回情報論的学習理論ワークショップ)
    • Place of Presentation
      名古屋大学 東山キャンパス 豊田講堂(愛知県・名古屋市)
    • Year and Date
      2014-11-17 – 2014-11-19
    • Related Report
      2014 Research-status Report
    • Invited
  • [Presentation] Add-if-silent rule for training multi-layered convolutional network neocognitron2014

    • Author(s)
      K. Fukushima
    • Organizer
      ICONIP 2014 (21st International Conference on Neural Information Processing)
    • Place of Presentation
      Kuching, Sarawak, Malaysia
    • Year and Date
      2014-11-03 – 2014-11-06
    • Related Report
      2014 Research-status Report
  • [Presentation] One-shot learning with feedback for multi-layered convolutional network2014

    • Author(s)
      K. Fukushima
    • Organizer
      ICANN 2014 (24th International Conference on Artificial Neural Networks)
    • Place of Presentation
      Hamburug, Germany
    • Year and Date
      2014-09-15 – 2014-09-19
    • Related Report
      2014 Research-status Report
  • [Presentation] 多層神経回路ネオコグニトロンの学習2014

    • Author(s)
      福島邦彦
    • Organizer
      FSS2014 (第30回 ファジィシステム シンポジウム)
    • Place of Presentation
      高知城ホール(高知県・高知市)
    • Year and Date
      2014-09-01 – 2014-09-03
    • Related Report
      2014 Research-status Report
  • [Presentation] How to design multi-layered neural networks for vision2013

    • Author(s)
      K. Fukushima
    • Organizer
      ICONIP 2013
    • Place of Presentation
      Daegu, Korea
    • Related Report
      2013 Research-status Report
    • Invited
  • [Book] Springer Handbook of Bio-/Neuro-Informatics, (Chapter 44)2014

    • Author(s)
      K. Fukushima, (editor: Nikola Kasabov)
    • Total Pages
      1230
    • Publisher
      Springer-Verlag, Berlin, Heidelberg
    • Related Report
      2013 Research-status Report
  • [Remarks] 福島邦彦 (Kunihiko Fukushima)

    • URL

      http://personalpage.flsi.or.jp/fukushima/

    • Related Report
      2017 Annual Research Report
  • [Remarks] 福島 邦彦 (Kunihiko Fukushima)

    • URL

      http://personalpage.flsi.or.jp/fukushima/

    • Related Report
      2016 Research-status Report
  • [Remarks] 福島邦彦

    • URL

      http://personalpage.flsi.or.jp/fukushima/

    • Related Report
      2015 Research-status Report 2014 Research-status Report
  • [Remarks] 福島邦彦

    • URL

      http://www4.ocn.ne.jp/~fuku_k/

    • Related Report
      2013 Research-status Report

URL: 

Published: 2014-07-25   Modified: 2019-07-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi