• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Numerical methods achieving higher accuracy than the Sinc numerical methods

Research Project

Project/Area Number 25390146
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Computational science
Research InstitutionAoyama Gakuin University

Principal Investigator

Sugihara Masaaki  青山学院大学, 理工学部, 教授 (80154483)

Research Collaborator TANAKA Ken'ichiro  
OKAYAMA Tomoaki  
SUGITA Kosuke  
Project Period (FY) 2013-04-01 – 2017-03-31
Project Status Completed (Fiscal Year 2016)
Budget Amount *help
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2015: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2014: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2013: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywords関数近似 / 数値積分 / Sinc関数近似 / DE変換 / 最適関数近似 / 最適数値積分公式 / DE公式 / Hardy空間 / ポテンシャル問題 / 最適近似式 / ポテンシャル / 丸め誤差 / 安定性
Outline of Final Research Achievements

Sinc numerical methods is a general term for numerical methods using Sinc approximation. They are extremely effective for analytic functions, and are known to be robust even when function has singularities. It is also shown that the Sinc approximation is nearly optimal in theory. In this research, we develope numerical methods achieving higher accuracy than the Sinc numerical methods. Specifically, we develope a function approximation formula achieving higher accuracy than the Sinc approximation, more precisely, an optimal approximation formula. Futher, based on the knowledge obtained there, we establish a theory of the optimal numerical integration and based on the theory, a numerical integration formula expected to be close to optimal is obtained by numerical calculation. We also develope a methodology based on the potential theory that designs optimal formulas in a unified way.

Report

(5 results)
  • 2016 Annual Research Report   Final Research Report ( PDF )
  • 2015 Research-status Report
  • 2014 Research-status Report
  • 2013 Research-status Report
  • Research Products

    (6 results)

All 2017 2016

All Journal Article (3 results) (of which Peer Reviewed: 3 results,  Open Access: 1 results,  Acknowledgement Compliant: 3 results) Presentation (3 results) (of which Int'l Joint Research: 1 results)

  • [Journal Article] Ganelius標本点を用いた関数近似公式2017

    • Author(s)
      鵜島 崇, 田中 健一郎, 岡山 友昭, 杉原 正顯
    • Journal Title

      日本応用数理学会論文誌

      Volume: 27

    • NAID

      130007043633

    • Related Report
      2016 Annual Research Report
    • Peer Reviewed / Open Access / Acknowledgement Compliant
  • [Journal Article] Potential theoretic approach to design of accurate numerical integration formulas in weighted Hardy spaces2017

    • Author(s)
      Ken'ichiro Tanaka, Tomoaki Okayama, and Masaaki Sugihara
    • Journal Title

      Approximation Theory XV, San Antonio, 2016

      Volume: 印刷中

    • Related Report
      2016 Annual Research Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Journal Article] Potential theoretic approach to design of accurate formulas for function approximation in symmetric weighted Hardy spaces2016

    • Author(s)
      K. Tanaka, T. Okayama, M. Sugihara
    • Journal Title

      IMA Journal of Numerical Analysis

      Volume: 未定

    • Related Report
      2015 Research-status Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Presentation] eye-shaped領域上の重み付きハーディ空間における2つの最適な関数近似公式の比較2016

    • Author(s)
      杉田 幸亮, 杉原 正顯, 田中 健一郎, 岡山 友昭
    • Organizer
      日本応用数理学会2016年度 年会
    • Place of Presentation
      北九州国際会議場
    • Year and Date
      2016-09-12
    • Related Report
      2016 Annual Research Report
  • [Presentation] 重み付きハーディ空間における高精度数値積分公式の設計2016

    • Author(s)
      田中 健一郎, 岡山 友昭 , 杉原 正顯
    • Organizer
      日本応用数理学会2016年度 年会
    • Place of Presentation
      北九州国際会議場
    • Year and Date
      2016-09-12
    • Related Report
      2016 Annual Research Report
  • [Presentation] Potential theoretic approach to design of highly accurate formulas for function approximation in weighted Hardy spaces2016

    • Author(s)
      K. Tanaka, T. Okayama, M. Sugihara
    • Organizer
      Second International ACCA-JP/UK Workshop
    • Place of Presentation
      Kyoto University, Kyoto, Japan
    • Year and Date
      2016-01-18
    • Related Report
      2015 Research-status Report
    • Int'l Joint Research

URL: 

Published: 2014-07-25   Modified: 2019-07-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi