• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

A deformation of symplectic structures and its application for unitary representations

Research Project

Project/Area Number 25400073
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Geometry
Research InstitutionKeio University

Principal Investigator

IKEDA Kaoru  慶應義塾大学, 経済学部(日吉), 教授 (40232178)

Project Period (FY) 2013-04-01 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥3,640,000 (Direct Cost: ¥2,800,000、Indirect Cost: ¥840,000)
Fiscal Year 2017: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2016: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2015: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2014: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2013: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Keywordsユニタリー表現 / 戸田格子 / 旗多様体 / シンプレクティック多様体 / 等エネルギー面 / 幾何学的量子化 / ハイゼンベルグ群 / シンプレクティック幾何学 / ユニタリー表現論 / quotient stacks / ハイゼンベルグ代数 / 偏極 / Gauss分解 / 既約ユニタリー表現 / 簡約リー群 / Symplectic幾何 / ゲージ理論 / 葉層構造 / 可積分系
Outline of Final Research Achievements

We study the geometrical quantization to construct irreducible unitary representations of reductive Lie groups. Let G be a reductive Lie group and B be its Borel subgroup. We consider the parabolic subgroup P which includes B. We study the flag variety X=G/P. The flag variety X is constructed by gluing |W| affine spaces, where W is Weyl group. Each affine space is isomorphic to Heisenberg group.

Academic Significance and Societal Importance of the Research Achievements

べき零Lie群や可解Lie群の既約ユニタリー表現の構成には余随伴軌道法が重要な役割を果たした。さらにKostantによりデンキン図形により分類される一般型戸田格子の可積分性も余随伴軌道を用いて証明された。余随伴軌道法の一般化である幾何学的量子化を用いれば可積分系とりわけ戸田格子を用いて半単純Lie群や簡約Lie群の既約ユニタリー表現の構成が得られることは十分期待できる。それは近年超原理論に関連するσ模型やミラー対称性の理論などとユニタリー表現の新しいつながりを期待させる。

Report

(7 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • 2016 Research-status Report
  • 2015 Research-status Report
  • 2014 Research-status Report
  • 2013 Research-status Report
  • Research Products

    (7 results)

All 2018 2017 2016 2014 Other

All Int'l Joint Research (1 results) Journal Article (3 results) (of which Peer Reviewed: 1 results,  Acknowledgement Compliant: 1 results) Presentation (3 results) (of which Invited: 2 results)

  • [Int'l Joint Research] ハーバード大学/ハーバード大学数学教室(米国)

    • Related Report
      2018 Annual Research Report
  • [Journal Article] Splitで連結な簡約Lie群上の戸田格子の特異点解消について2018

    • Author(s)
      Kaoru Ikeda
    • Journal Title

      京都大学数理解析研究所講究録

      Volume: 2077 Pages: 70-78

    • Related Report
      2018 Annual Research Report
  • [Journal Article] Splitで連結な簡約Lie群上の戸田格子の特異点解消について2018

    • Author(s)
      池田 薫
    • Journal Title

      京都大学数理解析研究所講究録「表現論とその周辺の広がり」に掲載決定

      Volume: 印刷中

    • Related Report
      2017 Research-status Report
  • [Journal Article] A generalization of the invariant formulas of the k-chop integrals2014

    • Author(s)
      池田 薫
    • Journal Title

      Kumamoto journal of mathematics

      Volume: 27 Pages: 1-4

    • NAID

      110009930177

    • Related Report
      2014 Research-status Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Presentation] 半単純Lie群のガウス分解と旗多様体の基本群について2017

    • Author(s)
      池田 薫
    • Organizer
      日本数学会幾何学分科会
    • Place of Presentation
      首都大学東京(八王子市)
    • Related Report
      2016 Research-status Report
  • [Presentation] 戸田格子の作用ー角変数と射影的旗多様体の偏極2016

    • Author(s)
      池田 薫
    • Organizer
      「新しい幾何学に向かって-2」
    • Place of Presentation
      東京理科大学森戸記念館(東京都新宿区)
    • Year and Date
      2016-02-27
    • Related Report
      2015 Research-status Report
    • Invited
  • [Presentation] Symplectic structures of projective flag manifold and the unitary representations2014

    • Author(s)
      池田 薫
    • Organizer
      Physical Mathematics Seminar
    • Place of Presentation
      Harvard University(米国)
    • Year and Date
      2014-11-03
    • Related Report
      2014 Research-status Report
    • Invited

URL: 

Published: 2014-07-25   Modified: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi