• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Quantization of singular nilpotent orbits of reductive Lie groups and realization of unitary representations

Research Project

Project/Area Number 25400103
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Basic analysis
Research InstitutionHokkaido University

Principal Investigator

Yamashita Hiroshi  北海道大学, 理学研究院, 教授 (30192793)

Co-Investigator(Renkei-kenkyūsha) SAITO Mutsumi  北海道大学, 大学院理学研究院, 教授 (70215565)
ABE Noriyuki  北海道大学, 大学院理学研究院, 准教授 (00553629)
Project Period (FY) 2013-04-01 – 2017-03-31
Project Status Completed (Fiscal Year 2016)
Budget Amount *help
¥4,940,000 (Direct Cost: ¥3,800,000、Indirect Cost: ¥1,140,000)
Fiscal Year 2015: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Fiscal Year 2014: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Fiscal Year 2013: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Keywordsリー群のユニタリ表現
Outline of Final Research Achievements

In this research project, we aimed to give a good realization of irreducible unitary representations of reductive Lie groups corresponding to singular nilpotent orbits through geometric quantization of adjoint orbits. As a result, the embeddings of every singular quaternionic unitary representation of exceptional simple Lie groups of real rank 4 into real parabolically induced modules (the principal series) are specified, and we have shown the uniqueness of such embeddings. Moreover, geometric structure of singular quaternionic nilpotent orbits has been described in terms of lower rank Hermite symmetric pairs (tube type) or quaternionic symmetric pairs.

Report

(5 results)
  • 2016 Annual Research Report   Final Research Report ( PDF )
  • 2015 Research-status Report
  • 2014 Research-status Report
  • 2013 Research-status Report
  • Research Products

    (1 results)

All Other

All Presentation (1 results)

  • [Presentation] 四元数型特異ユニタリ表現の実現について

    • Author(s)
      山下博
    • Organizer
      2013年度表現論ワークショップ
    • Place of Presentation
      京都大学(京都市)
    • Related Report
      2013 Research-status Report

URL: 

Published: 2014-07-25   Modified: 2019-07-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi