Vakue distribution theory of meromorphic mappings
Project/Area Number |
25400125
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Basic analysis
|
Research Institution | Fukushima University |
Principal Investigator |
|
Co-Investigator(Renkei-kenkyūsha) |
Kitagawa Yoshihisa 宇都宮大学, 教育学部, 教授 (20144917)
Atsuji Atsushi 慶應義塾大学, 理工学部, 教授 (00221044)
Kamada Hiroyuki 宮城教育大学, 教育学部, 教授 (00249799)
|
Project Period (FY) |
2013-04-01 – 2017-03-31
|
Project Status |
Completed (Fiscal Year 2016)
|
Budget Amount *help |
¥5,070,000 (Direct Cost: ¥3,900,000、Indirect Cost: ¥1,170,000)
Fiscal Year 2016: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2015: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2014: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2013: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
|
Keywords | Nevanlinna理論 / 有理型写像 / 除外指数 / 一次系 / 一意性定理 / 有限性定理 / 第2主要定理 / 一意性問題 / 複素関数論 / 複素解析幾何学 / 値分布論 / 除外因子 / 正則曲線 / Borel型恒等式 / Schwarz の補題 / Landau-Schottky型定理 / 旗多様体 |
Outline of Final Research Achievements |
We study property of Nevanlinna's deficiency as functions on linear systems in smooth complex projective algebraic varieties. We first shwo that the values of a deficient functions are detemined by the base locus of linear systems. We gi give a structure theorem for the set of fdeficient dividors. This structuretheoremyields that the set of values of deficiency is at most countable.Moreover, we have acorrespondence between the deficiencies and the linear systems. We also atudy a second main theorem for holomorphic curves, especially the trunation of level of the counting functions.
|
Report
(5 results)
Research Products
(2 results)