• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Development for inverse boundary value problems using asymptotic analysis of resolvents

Research Project

Project/Area Number 25400170
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Mathematical analysis
Research InstitutionHiroshima University

Principal Investigator

Kawashita Mishio  広島大学, 理学(系)研究科(研究院), 教授 (80214633)

Project Period (FY) 2013-04-01 – 2016-03-31
Project Status Completed (Fiscal Year 2015)
Budget Amount *help
¥4,940,000 (Direct Cost: ¥3,800,000、Indirect Cost: ¥1,140,000)
Fiscal Year 2015: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2014: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2013: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Keywordsレゾルベント / 境界値逆問題 / 囲い込み法 / 漸近展開 / ポテンシャル論
Outline of Final Research Achievements

In the boundary value inverse problem of a heat equation, the information on cavities or inclusions are deduced from the analysis of the asymptotic behavior of the function called an "indicator function." The aim of this research is to obtain this information via analysis of the asymptotic behavior of the resolvents. First, a domain including this cave is given only from one observational data by showing detailed estimation of an integral kernel for a strictly convex cave. This result is extended to the case of several strictly convex cavities. This problem setup is natural extension of the inverse problem for one-dimensional case. Furthermore, through this research, it became clear that there is a close relation to the asymptotic behavior of indicator functions and resolvents.

Report

(4 results)
  • 2015 Annual Research Report   Final Research Report ( PDF )
  • 2014 Research-status Report
  • 2013 Research-status Report
  • Research Products

    (9 results)

All 2015 2014

All Journal Article (2 results) (of which Peer Reviewed: 2 results,  Acknowledgement Compliant: 1 results) Presentation (6 results) (of which Invited: 5 results) Funded Workshop (1 results)

  • [Journal Article] An inverse problem for a three-dimensional heat equation in thermal imaging and the enclosure method2014

    • Author(s)
      Ikehata, M. and Kawashita, M.
    • Journal Title

      Inverse Problems and Imaging

      Volume: 8 Issue: 4 Pages: 1073-1116

    • DOI

      10.3934/ipi.2014.8.1073

    • Related Report
      2014 Research-status Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Journal Article] Estimates of the integral kernels arising from inverse problems for a three-dimensional heat equation in thermal imaging2014

    • Author(s)
      M.Ikehata and M. Kawashita
    • Journal Title

      Kyoto J. Math.

      Volume: 54 Pages: 1-50

    • Related Report
      2013 Research-status Report
    • Peer Reviewed
  • [Presentation] 複数の凸な空洞をもつ領域上の熱方程式に対する囲い込み法2015

    • Author(s)
      川下美潮
    • Organizer
      ひこね解析セミナー
    • Place of Presentation
      彦根勤労福祉会館
    • Year and Date
      2015-06-06
    • Related Report
      2015 Annual Research Report
    • Invited
  • [Presentation] 消散項付き波動方程式の解のエネルギー減衰について2014

    • Author(s)
      川下 美潮
    • Organizer
      Seminar on Nonlinear Analysis at O-okayama
    • Place of Presentation
      東京工業大学 情報理工学研究科
    • Year and Date
      2014-12-12
    • Related Report
      2014 Research-status Report
    • Invited
  • [Presentation] 消散項付き波動方程式の解のエネルギー減衰について2014

    • Author(s)
      川下 美潮
    • Organizer
      信州大学偏微分方程式研究集会
    • Place of Presentation
      信州大学 理学部
    • Year and Date
      2014-06-13
    • Related Report
      2014 Research-status Report
    • Invited
  • [Presentation] Decaying properties of the total and local energies for the wave2014

    • Author(s)
      川下美潮
    • Organizer
      第31回九州における偏微分方程式研究集会
    • Place of Presentation
      福岡大学 メディカルホール
    • Related Report
      2013 Research-status Report
    • Invited
  • [Presentation] Sufficient conditions for decaying properties of local energy for the dissipative wave equations2014

    • Author(s)
      川下美潮
    • Organizer
      第6回 名古屋微分方程式研究集会
    • Place of Presentation
      名古屋大学 多元数理研究科
    • Related Report
      2013 Research-status Report
    • Invited
  • [Presentation] 消散項付き波動方程式の解のエネルギー減衰について2014

    • Author(s)
      川下美潮
    • Organizer
      現象解析特別セミナー第5回
    • Place of Presentation
      茨城大学教育学部
    • Related Report
      2013 Research-status Report
  • [Funded Workshop] 保存則をもつ偏微分方程式に対する解の正則性・特異性の研究2015

    • Place of Presentation
      京都大学数理解析研究所
    • Year and Date
      2015-06-03
    • Related Report
      2015 Annual Research Report

URL: 

Published: 2014-07-25   Modified: 2019-07-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi