• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Construction of sequential estimation procedures for nonregular probability distributions

Research Project

Project/Area Number 25400189
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Foundations of mathematics/Applied mathematics
Research InstitutionUniversity of Tsukuba

Principal Investigator

KOIKE Ken-ichi  筑波大学, 数理物質系, 准教授 (90260471)

Co-Investigator(Kenkyū-buntansha) 赤平 昌文  筑波大学, 数理物質系(名誉教授), 名誉教授 (70017424)
Project Period (FY) 2013-04-01 – 2017-03-31
Project Status Completed (Fiscal Year 2016)
Budget Amount *help
¥4,940,000 (Direct Cost: ¥3,800,000、Indirect Cost: ¥1,140,000)
Fiscal Year 2016: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2015: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2014: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2013: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywordsベイズ推測 / ダイバージェンス / 情報不等式 / 歪正規分布 / 無情報事前分布 / 対称分布 / 条件付き最尤推定量 / 歪q正規分布 / 逐次推測 / 有効性
Outline of Final Research Achievements

In this research we consider the following problems.
First, in Bayesian estimation, it is very important to choose an objective prior distribution when little prior information is available. In this research we derived a non-informative prior which maximizes the alpha divergence between the prior and the corresponding posterior distribution for non-regular family of distributions whose support depends on unknown parameter. Secondly, lower bounds for the Bayes risk were obtained. The bounds improve the Brown-Gajek bound and the asymptotic expression is derived. As an application of the bound, lower bounds for the local minimax and Bayes prediction risk are also given. Furthermore, we generalized the skew-q-gaussian distribution by combining the skew distribution with the q-gaussian distribution. Recurrence formulae for the central moments were derived. The likelihood equation and Fisher information matrix were calculated. Moreover, the extreme value distribution was derived.

Report

(5 results)
  • 2016 Annual Research Report   Final Research Report ( PDF )
  • 2015 Research-status Report
  • 2014 Research-status Report
  • 2013 Research-status Report
  • Research Products

    (13 results)

All 2017 2016 2015 2014 2013

All Journal Article (8 results) (of which Peer Reviewed: 5 results,  Open Access: 3 results) Presentation (5 results)

  • [Journal Article] Non-informative prior with maximum divergence for non-regular Bayesian estimation2017

    • Author(s)
      Hashimoto, S. and Koike, K.
    • Journal Title

      International Journal of Applied and Experimental Mathematics

      Volume: 印刷中

    • Related Report
      2016 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] exponential-symmetry and power-symmetry2017

    • Author(s)
      石原隆佑,小池健一
    • Journal Title

      京都大学数理解析研究所講究録

      Volume: 印刷中

    • Related Report
      2016 Annual Research Report
  • [Journal Article] Second order asymptotic comparison of the MLE and MCLE for a two-sided truncated exponential family of distributions2016

    • Author(s)
      M.Akahira, S.Hashimoto, K.Koike and N.Ohyauchi
    • Journal Title

      Communications in Statistics - Theory and Methods

      Volume: 45 Issue: 19 Pages: 5637-5659

    • DOI

      10.1080/03610926.2014.948202

    • NAID

      120007129388

    • Related Report
      2016 Annual Research Report 2015 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Bhattacharyya type information inequality for the Bayes risk2015

    • Author(s)
      Hashimoto, S., Koike, K.
    • Journal Title

      Communications in Statistics-Theory and Methods

      Volume: 印刷中 Issue: 24 Pages: 5213-5224

    • DOI

      10.1080/03610926.2013.810265

    • Related Report
      2015 Research-status Report 2014 Research-status Report
    • Peer Reviewed
  • [Journal Article] Reference prior based on a general divergence for multi-parameter non-regular models2015

    • Author(s)
      橋本真太郎, 小池健一
    • Journal Title

      数理解析研究所講究録

      Volume: 1954 Pages: 125-133

    • Related Report
      2015 Research-status Report
    • Open Access
  • [Journal Article] Second order asymptotic comparison of the MLE and MCLE for a two-sided truncated exponential family of distributions2015

    • Author(s)
      M. Akahira, S. Hashimoto, K. Koike, and N. Ohyauchi
    • Journal Title

      Communications in Statistics-Theory and Methods

      Volume: 44

    • NAID

      120007129388

    • Related Report
      2014 Research-status Report
    • Peer Reviewed
  • [Journal Article] Bhattacharyya type information inequality for the Bayes risk2014

    • Author(s)
      Shintaro Hashimoto and Ken-ichi Koike
    • Journal Title

      Communications in Statistics-Theory and Methods

      Volume: 印刷中

    • Related Report
      2013 Research-status Report
    • Peer Reviewed
  • [Journal Article] ベイズリスクに対するバッタチャリャ型情報不等式2013

    • Author(s)
      橋本真太郎,小池健一
    • Journal Title

      京都大学数理解析研究所講究録

      Volume: 1860 Pages: 1-8

    • Related Report
      2013 Research-status Report
  • [Presentation] Reference priors with maximum divergence for multiparameter non-regular models2015

    • Author(s)
      橋本真太郎,小池健一
    • Organizer
      日本数学会2015年度年会
    • Place of Presentation
      明治大学(東京都・千代田区)
    • Year and Date
      2015-03-23
    • Related Report
      2014 Research-status Report
  • [Presentation] Objective priors based on general divergence in non-regular case2015

    • Author(s)
      橋本真太郎,小池健一
    • Organizer
      RIMS共同研究による研究会「New Advances in Statistical Inference and Its Related Topics」
    • Place of Presentation
      京都大学(京都府・京都市)
    • Year and Date
      2015-03-11
    • Related Report
      2014 Research-status Report
  • [Presentation] 非正則な確率分布に対するダイバージェンス最大化による無情報事前分布について2014

    • Author(s)
      橋本真太郎,小池健一
    • Organizer
      科研費シンポジウム「統計的推測の理論的基礎とその応用」
    • Place of Presentation
      筑波大学(茨城県・つくば市)
    • Year and Date
      2014-12-02
    • Related Report
      2014 Research-status Report
  • [Presentation] 接合関数を用いた分布の極値従属性2014

    • Author(s)
      根本大輝,小池健一
    • Organizer
      RIMS共同研究による研究会”Asymptotic Statistics and Its Related Topics”
    • Place of Presentation
      京都大学,京都
    • Related Report
      2013 Research-status Report
  • [Presentation] Asymptotic comparison of the MLE and MCLE up to the second order for a two-sided truncated exponential family2014

    • Author(s)
      赤平昌文,橋本真太郎,小池健一,大谷内奈穂
    • Organizer
      日本数学会年会
    • Place of Presentation
      学習院大学,東京
    • Related Report
      2013 Research-status Report

URL: 

Published: 2014-07-25   Modified: 2019-07-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi