• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

An approach for eliminating chance correlations and its application to pharmaceutical data.

Research Project

Project/Area Number 25460035
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Physical pharmacy
Research InstitutionOsaka University

Principal Investigator

Takagi Tatsuya  大阪大学, 薬学研究科, 教授 (80144517)

Co-Investigator(Kenkyū-buntansha) 川下 理日人  大阪大学, 薬学研究科, 助教 (00423111)
岡本 晃典  北陸大学, 薬学部, 講師 (70437309)
Project Period (FY) 2013-04-01 – 2017-03-31
Project Status Completed (Fiscal Year 2016)
Budget Amount *help
¥5,070,000 (Direct Cost: ¥3,900,000、Indirect Cost: ¥1,170,000)
Fiscal Year 2015: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2014: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2013: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
KeywordsChance Correlation / L1 Regularization / L2 Regularization / Ridge Regression / Elastic Net / Hydrolyzability / Classification / Data Mining / 正則化 / 加水分解 / 環境化学 / ロジスティック回帰 / 回帰分析 / 判別分析 / 偶然の相関 / 加水分解性予測 / 説明変数 / 医薬学統計 / 主成分分析 / 主成分回帰 / PLS / バリマックス変換 / PCLS
Outline of Final Research Achievements

We tried to develop a novel method for eliminating "Chance correlation" descriptors which appear when supervised learning is applied. As a result, we found a combinatoric method using data classification and regression methods gave better results in the case of artificial data.
However, we also found that the appropriate combination of L1 and L2 regularization also provided better predictability in the case of real data sets which showed simpler data structures. According to Ockham's prionciple, we adopted elastic net and similar methods to eliminate chance correlation descriptors. Thus, we found the latter combinatoric method applied for predicting hydrolyzabilities of esters, amides, etc showed the best predictability (in the case of esters, the correct classification rate was 89%), when L2 regularization was carried out after L1 one.
Therefore, it can be concluded that the former method gives better predictability for complex data, and latter one is better for complex data.

Report

(5 results)
  • 2016 Annual Research Report   Final Research Report ( PDF )
  • 2015 Research-status Report
  • 2014 Research-status Report
  • 2013 Research-status Report
  • Research Products

    (7 results)

All 2016 2015 2014

All Presentation (7 results) (of which Int'l Joint Research: 3 results,  Invited: 2 results)

  • [Presentation] Logistic Regression Analysis for Predicting Hydrolysability using Regularization Techniques2016

    • Author(s)
      Tatsuya TAKAGI
    • Organizer
      5th International Conference on Biometrics & Biostatistics
    • Place of Presentation
      Houston, USA
    • Year and Date
      2016-10-20
    • Related Report
      2016 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Predicting Hydrolyzability using Logistic Regression Analyses and Regularization Techniques2016

    • Author(s)
      Tomoko Hatta, Norihito Kawashita, Yu-shi Tian, Tatsuya Takagi
    • Organizer
      XVI Chemometrics in Analytical Chemistry 2016
    • Place of Presentation
      Barcelona, Spain
    • Year and Date
      2016-06-06
    • Related Report
      2015 Research-status Report
    • Int'l Joint Research
  • [Presentation] Chance Correlation を可能な限り回避する回帰手法の開発と応用2015

    • Author(s)
      八田 朋子, 川下 理日人, 田 雨時, 高木 達也
    • Organizer
      第38回ケモインフォマティクス討論会
    • Place of Presentation
      東京
    • Year and Date
      2015-10-08
    • Related Report
      2015 Research-status Report
  • [Presentation] A Novel Combinatorial Regression Method for Avoiding Chance Correlations2015

    • Author(s)
      Tatsuya Takagi, Norihito Kawashita, Tomoko Hatta, Tamaki Takaya, Tian Yu-shi, Kousuke Okamoto
    • Organizer
      XV Chemometrics in Analytical Chemistry
    • Place of Presentation
      長沙、中国
    • Year and Date
      2015-06-22 – 2015-06-26
    • Related Report
      2014 Research-status Report
    • Invited
  • [Presentation] A Novel Combinatorial Regression Mmethod For Avoiding Chance Correlations.2015

    • Author(s)
      Tatsuya Takagi, Norihito Kawashita, Tomoko Hatta, Tamaki Takaya, Yushi Tian, Kousuke Okamoto
    • Organizer
      XV Chemometrics in Analytical Chemistry 2015
    • Place of Presentation
      Changsha,China
    • Year and Date
      2015-06-22
    • Related Report
      2015 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Development of Combinatorial Regression Method for Avoiding Chance Correlations2014

    • Author(s)
      Tomoko Hatta, Tamaki Takaya, Tatsuya Takagi, Norihito Kawashita, Kousuke Okamoto
    • Organizer
      8th International Conference on Partial Least Squares and Related Methods
    • Place of Presentation
      Paris
    • Year and Date
      2014-05-26 – 2014-05-28
    • Related Report
      2014 Research-status Report
  • [Presentation] Development of Combinatorial Regression Method for Avoiding Chance Correlations2014

    • Author(s)
      Tatsuya TAKAGI
    • Organizer
      PLS'14
    • Place of Presentation
      Paris
    • Related Report
      2013 Research-status Report

URL: 

Published: 2014-07-25   Modified: 2019-07-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi