• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Research on accumulation and reuse of musical operations

Research Project

Project/Area Number 25700036
Research Category

Grant-in-Aid for Young Scientists (A)

Allocation TypePartial Multi-year Fund
Research Field Entertainment and game informatics 1
Research InstitutionKyoto University (2014-2016)
University of Tsukuba (2013)

Principal Investigator

Hamanaka Masaotshi  京都大学, 医学(系)研究科(研究院), 研究員 (30451686)

Project Period (FY) 2013-04-01 – 2017-03-31
Project Status Completed (Fiscal Year 2016)
Budget Amount *help
¥10,660,000 (Direct Cost: ¥8,200,000、Indirect Cost: ¥2,460,000)
Fiscal Year 2016: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
Fiscal Year 2015: ¥3,510,000 (Direct Cost: ¥2,700,000、Indirect Cost: ¥810,000)
Fiscal Year 2014: ¥3,640,000 (Direct Cost: ¥2,800,000、Indirect Cost: ¥840,000)
Fiscal Year 2013: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Keywords音楽理論GTTM / 音楽構造分析 / グルーピング構造 / 拍節構造 / タイムスパン木 / メロディモーフィング / ディープラーニング / グルーピング構造分析 / 拍節構造分析 / 意味構造分析 / 再利用 / 音楽分析 / 意味構造解析 / 楽曲構造
Outline of Final Research Achievements

Our goal is to create a system that will enable a musical novice to manipulate a piece of music, which is an ambiguous and subjective media, according to his or her intentions. The main advantage of analysis by a GTTM is that it can acquire tree structures called time-span trees. A time-span tree provides a summarization of a piece of music, which can be used as the representation of an abstraction, resulting in a music retrieval system. It can also be used for performance rendering and reproducing music. The time-span tree can also be used for melody prediction and melody morphing. These systems need a GTTM analyzer that enables us to output the results obtained from analysis that are the same as those obtained by musicologists. In this study, we developed groping structure and metrical structure analyzer based on deep learning. Experimental result shows that the analyzer shows high performance. We plan to implement time-span reduction analysis on the bases of deep learning.

Report

(5 results)
  • 2016 Annual Research Report   Final Research Report ( PDF )
  • 2015 Annual Research Report
  • 2014 Annual Research Report
  • 2013 Annual Research Report
  • Research Products

    (27 results)

All 2017 2016 2015 2014 2013 Other

All Journal Article (3 results) (of which Peer Reviewed: 3 results) Presentation (18 results) (of which Int'l Joint Research: 4 results) Book (4 results) Remarks (2 results)

  • [Journal Article] 類似楽曲の決定木学習に基づく音楽理論2017

    • Author(s)
      金森 光平, 星野 准一, 浜中 雅俊
    • Journal Title

      電子通信学会論文誌

      Volume: J100-D Pages: 129-139

    • Related Report
      2016 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Computational Reconstruction of Cognitive Music Theory2013

    • Author(s)
      Satoshi Tojo, Keiji Hirata, Masatoshi Hamanaka
    • Journal Title

      New Generation Computing

      Volume: 31 Pages: 89-113

    • NAID

      120005367920

    • Related Report
      2013 Annual Research Report
    • Peer Reviewed
  • [Journal Article] コンサートスコープヘッドフォン2013

    • Author(s)
      浜中雅俊, 李昇姫
    • Journal Title

      日本バーチャルリアリティ学会論文誌

      Volume: Vol.18, No.3 Pages: 227-236

    • Related Report
      2013 Annual Research Report
    • Peer Reviewed
  • [Presentation] deepGTTM-II: Automatic Generation of Metrical Structure based on Deep Learing Technique2016

    • Author(s)
      Masatoshi Hamanaka, Keiji Hirata, Satashi Tojo
    • Organizer
      13th Sound and Music Conference (SMC2016)
    • Place of Presentation
      ドイツ(ハンブルグ)
    • Year and Date
      2016-08-31
    • Related Report
      2016 Annual Research Report
    • Int'l Joint Research
  • [Presentation] deepGTTM-II: ディープラーニングに基づく拍節構造分析器2016

    • Author(s)
      浜中雅俊, 平田圭二,東条敏
    • Organizer
      情報処理学会 音楽情報科学研究会研究報告
    • Place of Presentation
      東京理科大学野田キャンパス
    • Year and Date
      2016-07-30
    • Related Report
      2016 Annual Research Report
  • [Presentation] deepGTTM-I: Local Boundaries Analyzer based on Deep Learning Technique2016

    • Author(s)
      Masatoshi Hamanaka, Keiji Hirata, Satashi Tojo
    • Organizer
      13th International Symposium on Computer Music Multidisciplinary Research(CMMR2016)
    • Place of Presentation
      ブラジル(サンパウロ)
    • Year and Date
      2016-07-05
    • Related Report
      2016 Annual Research Report
    • Int'l Joint Research
  • [Presentation] deepGTTM-I: :ディープラーニングに基づく局所的グルーピング境界分析器2016

    • Author(s)
      浜中雅俊, 平田圭二,東条敏
    • Organizer
      人工知能学会全国大会
    • Place of Presentation
      北九州国際会議場
    • Year and Date
      2016-06-06
    • Related Report
      2016 Annual Research Report
  • [Presentation] “クラスタリングと機械学習を用いた音楽理論GTTMに基づく楽曲構造分析システム2016

    • Author(s)
      金森光平, 浜中雅俊, 星野准一
    • Organizer
      情報処理学会 音楽情報科学研究会 研究報告
    • Place of Presentation
      大阪
    • Year and Date
      2016-02-29
    • Related Report
      2015 Annual Research Report
  • [Presentation] “Structural Similarity based on Time-span Sub-trees2015

    • Author(s)
      Masatoshi Hamanaka, Keiji Hirata, Satoshi Tojo
    • Organizer
      Proceedings of The 5th International Conference on Mathematics and Computation in Music (MCM2015)
    • Place of Presentation
      イギリス(ロンドン)
    • Year and Date
      2015-07-22
    • Related Report
      2015 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Masatoshi Hamanaka, Keiji Hirata, Satoshi Tojo2015

    • Author(s)
      Sigma GTTM III: Learning based Time-span Tree Generator based on PCFG
    • Organizer
      Proceedings of The 11th International Symposium on Computer Music Multidisciplinary Research (CMMR 2015)
    • Place of Presentation
      イギリス(プリマス)
    • Year and Date
      2015-07-16
    • Related Report
      2015 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Musical Structural Analysis Database Based on GTTM2014

    • Author(s)
      Masatoshi Hamanaka, Keiji Hirata, Satoshi Tojo
    • Organizer
      Proceedings of ISMIR 2014
    • Place of Presentation
      Taipei
    • Year and Date
      2014-10-27 – 2014-10-31
    • Related Report
      2014 Annual Research Report
  • [Presentation] A Novel Approach to Separation of Musical Signal Sources by NMF2014

    • Author(s)
      Sakurako Yazawa, Masatoshi Hamanaka, Takehito Utsuro
    • Organizer
      The 12th IEEE International Conerence on Signal Processing
    • Place of Presentation
      Hangzhou
    • Year and Date
      2014-10-19 – 2014-10-23
    • Related Report
      2014 Annual Research Report
  • [Presentation] Method to detect GTTM local grouping boundary aries based on clustering and statistical leraning2014

    • Author(s)
      Kohei Kanamori, Masatoshi Hamanaka
    • Organizer
      Proceedings of Joint ICMC and SMC 2014
    • Place of Presentation
      Athens
    • Year and Date
      2014-09-14 – 2014-09-20
    • Related Report
      2014 Annual Research Report
  • [Presentation] Cognitive Similarity grounded by tree distance from the analysis of K.265/300e2014

    • Author(s)
      Keiji Hirata, Satoshi Tojo, Masatoshi Hamanaka
    • Organizer
      Proceedings of Joint ICMC and SMC 2014
    • Place of Presentation
      Athens
    • Year and Date
      2014-09-14 – 2014-09-20
    • Related Report
      2014 Annual Research Report
  • [Presentation] スペクトル包絡保存に基づくNMFによる音源分離2014

    • Author(s)
      浅川智瑛, 浜中雅俊
    • Organizer
      情報処理学会 音楽情報科学研究会, 2014-MUS-102
    • Place of Presentation
      筑波大学東京キャンパス
    • Related Report
      2013 Annual Research Report
  • [Presentation] クラスタリングと統計的学習に基づく音楽理論σGTTM II:局所的グルーピング境界の検出2014

    • Author(s)
      金森光平, 浜中雅俊
    • Organizer
      情報処理学会 音楽情報科学研究会, 2014-MUS-102
    • Place of Presentation
      筑波大学東京キャンパス
    • Related Report
      2013 Annual Research Report
  • [Presentation] 主観的類似度を反映した暗意実現モデルの拡張2014

    • Author(s)
      矢澤櫻子, 浜中雅俊
    • Organizer
      情報処理学会 音楽情報科学研究会, 2014-MUS-102
    • Place of Presentation
      筑波大学東京キャンパス
    • Related Report
      2013 Annual Research Report
  • [Presentation] Time-Span Tree Analyzer for Polyphonic Music2013

    • Author(s)
      Masatoshi Hamanaka, Keiji Hirata, Satashi Tojo
    • Organizer
      10th International Symposium on Computer Music Multidisciplinary Research(CMMR2013)
    • Place of Presentation
      Marseille(France)
    • Related Report
      2013 Annual Research Report
  • [Presentation] Cognitive Similarity Grounded by Tree Distance from the Analysis of K.265/300e2013

    • Author(s)
      Keiji Hirata, Satoshi Tojo, Masatoshi Hamanaka
    • Organizer
      10th International Symposium on Computer Music Multidisciplinary Research(CMMR2013)
    • Place of Presentation
      Marseille(France)
    • Related Report
      2013 Annual Research Report
  • [Presentation] Concert Scope Headphones2013

    • Author(s)
      Masatoshi Hamanaka, Seunghee Lee
    • Organizer
      International Computer Music Conference 2013(ICMC2013)
    • Place of Presentation
      Perth (Austraila)
    • Related Report
      2013 Annual Research Report
  • [Presentation] Toward Developing a Polyphonic Music Time-Span Tree Analyzer2013

    • Author(s)
      Masatoshi Hamanaka, Keiji Hirata, Satoshi Tojo
    • Organizer
      Mathematics and Computation in Music 2013(MCM2013)
    • Place of Presentation
      Montreal (Canada)
    • Related Report
      2013 Annual Research Report
  • [Book] “Implementing Methods for Analyzing Music Based on Lerdahl and Jackendoff’s Generative Theory of Tonal Music”, In Computational Music Analysis2016

    • Author(s)
      Masatoshi Hamanaka, Keiji Hirata, Satoshi Tojo
    • Publisher
      Springer
    • Related Report
      2016 Annual Research Report
  • [Book] “An Algebraic Approach to Time-Span Reduction”, In Computational Music Analysis, David Meredith (Ed.)2016

    • Author(s)
      Keiji Hirata, Satoshi Tojo, Masatoshi Hamanaka
    • Publisher
      Springer
    • Related Report
      2016 Annual Research Report
  • [Book] Implementing Methods for Analyzing Music Based on Lerdahl and Jackendoff’s Generative Theory of Tonal Music In Computational Music Analysis2016

    • Author(s)
      Masatoshi Hamanaka, Keiji Hirata, Satoshi Tojo
    • Publisher
      Springer
    • Related Report
      2015 Annual Research Report
  • [Book] An Algebraic Approach to Time-Span Reduction”, In Computational Music Analysis2016

    • Author(s)
      Keiji Hirata, Satoshi Tojo, Masatoshi Hamanaka
    • Publisher
      Springer
    • Related Report
      2015 Annual Research Report
  • [Remarks] http://gttm.jp/

    • Related Report
      2016 Annual Research Report
  • [Remarks] 音楽理論GTTM研究用データベース

    • URL

      http://gttm.jp/

    • Related Report
      2015 Annual Research Report

URL: 

Published: 2013-05-21   Modified: 2019-07-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi