Budget Amount *help |
¥20,410,000 (Direct Cost: ¥15,700,000、Indirect Cost: ¥4,710,000)
Fiscal Year 2015: ¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
Fiscal Year 2014: ¥6,500,000 (Direct Cost: ¥5,000,000、Indirect Cost: ¥1,500,000)
Fiscal Year 2013: ¥10,790,000 (Direct Cost: ¥8,300,000、Indirect Cost: ¥2,490,000)
|
Outline of Final Research Achievements |
Photo-induced high-purity hydrogen production was investigated by using bilayer membranes composed of nanostructured semiconductor photocatalysts and hydrogen permeable membranes. Firstly, a bilayer structure comprised by anodized TiO2 nanotube array and palladium electroless-plated film was considered, and all electrochemical fabrication of the ultrathin bilayer membranes with a thickness of a few micrometers was established. Then, high-purity hydrogen production from water photolysis with methanol as a sacrificial reagent was demonstrated as well as the establishment of evaluation methods of hydrogen production rate and apparent quantum yield in the bilayer membranes. In addition, gas-phase photocatalysis of methanol over platinum-loaded iron oxide nanotube arrays was examined in high vacuum. As a result, hydrogen production was detected under visible-light illumination, suggesting that some interesting phenomena characteristic of gas-phase photocatalysis were successfully monitored.
|