• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Geometric and algebraic approach to the embedding spaces

Research Project

Project/Area Number 25800038
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Geometry
Research InstitutionShinshu University

Principal Investigator

SAKAI Keiichi  信州大学, 学術研究院理学系, 助教 (20466824)

Project Period (FY) 2013-04-01 – 2016-03-31
Project Status Completed (Fiscal Year 2015)
Budget Amount *help
¥3,250,000 (Direct Cost: ¥2,500,000、Indirect Cost: ¥750,000)
Fiscal Year 2015: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2014: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2013: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Keywords埋め込みの空間 / グラフ / 配置空間 / ループ空間 / オペラッド / 代数的トポロジー / 埋め込みのなす空間 / 分類空間 / グラフ複体 / トポロジー / Haefliger不変量 / 多重ループ空間 / ジェネリックはめ込み
Outline of Final Research Achievements

The Haefliger invariant is known to classify the isotopy classes of embeddings of spheres in a dimension. I have described the Haefliger invariant using certain integrals over configuration spaces associated with graph cocycles, and I have shown that the Haefliger invariant behaves similarly to the finite type invariants. As a byproduct I have obtained a generic regular homotopy invariant of immersions with some conditions.
Based on the fact that the space of embeddings of spheres is a multi-fold loop space, I have given its "delooping" using the topological Stiefel manifolds, and I have obtained a homotopy-theoretic interpretation of the Haefliger's classification of the embeddings of spheres.

Report

(4 results)
  • 2015 Annual Research Report   Final Research Report ( PDF )
  • 2014 Research-status Report
  • 2013 Research-status Report
  • Research Products

    (8 results)

All 2016 2015 2014 Other

All Journal Article (3 results) (of which Peer Reviewed: 3 results,  Acknowledgement Compliant: 3 results,  Open Access: 1 results) Presentation (4 results) (of which Invited: 1 results) Remarks (1 results)

  • [Journal Article] BV-structures on the homology of the framed long knot space2016

    • Author(s)
      Keiichi Sakai
    • Journal Title

      Journal of Homotopy and Related Structures (Online First Article)

      Volume: 11 Issue: 3 Pages: 1-17

    • DOI

      10.1007/s40062-015-0111-1

    • NAID

      120007100728

    • Related Report
      2015 Annual Research Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Journal Article] Lin-Wang type formula for the Haefliger invariant2015

    • Author(s)
      Keiichi Sakai
    • Journal Title

      Homology, Homotopy and Applications

      Volume: 17 Issue: 2 Pages: 317-341

    • DOI

      10.4310/hha.2015.v17.n2.a15

    • Related Report
      2015 Annual Research Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Journal Article] Deloopings of the spaces of long embeddings2014

    • Author(s)
      Keiichi Sakai
    • Journal Title

      Fundamenta Mathematicae

      Volume: 227 Issue: 1 Pages: 27-34

    • DOI

      10.4064/fm227-1-3

    • NAID

      120007100729

    • Related Report
      2014 Research-status Report
    • Peer Reviewed / Open Access / Acknowledgement Compliant
  • [Presentation] Delooping of the space of long embeddings2015

    • Author(s)
      境 圭一
    • Organizer
      トポロジー金曜セミナー
    • Place of Presentation
      九州大学
    • Year and Date
      2015-11-06
    • Related Report
      2015 Annual Research Report
  • [Presentation] Lin-Wang type formula for Haefliger's invariant2014

    • Author(s)
      境 圭一
    • Organizer
      京都大学談話会
    • Place of Presentation
      京都大学
    • Year and Date
      2014-12-03
    • Related Report
      2014 Research-status Report
    • Invited
  • [Presentation] Haefliger不変量に対するLin-Wang型公式2014

    • Author(s)
      境 圭一
    • Organizer
      日本数学会 2014年度秋季総合分科会
    • Place of Presentation
      広島大学
    • Year and Date
      2014-09-27
    • Related Report
      2014 Research-status Report
  • [Presentation] Haefliger不変量に対するLin-Wang型公式2014

    • Author(s)
      境 圭一
    • Organizer
      信州トポロジーセミナー
    • Place of Presentation
      信州大学
    • Year and Date
      2014-04-17
    • Related Report
      2014 Research-status Report 2013 Research-status Report
  • [Remarks] Website of Keiichi Sakai

    • URL

      http://math.shinshu-u.ac.jp/~ksakai/index_j.html

    • Related Report
      2015 Annual Research Report 2014 Research-status Report

URL: 

Published: 2014-07-25   Modified: 2019-07-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi