Kahler-Einstein metrics and birational geometry
Project/Area Number |
25800050
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Multi-year Fund |
Research Field |
Geometry
|
Research Institution | Fukuoka University (2016) Kumamoto University (2013-2015) |
Principal Investigator |
Sano Yuji 福岡大学, 理学部, 教授 (00399792)
|
Project Period (FY) |
2013-04-01 – 2017-03-31
|
Project Status |
Completed (Fiscal Year 2016)
|
Budget Amount *help |
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2016: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2015: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2014: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2013: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
|
Keywords | ケーラー・アインシュタイン計量 / K 安定性 / トーリックファノ多様体 / 端的ケーラー計量 / balanced 計量 / ケーラーアインシュタイン計量 / 二木不変量 / 多面体の重心 / バランスド計量 |
Outline of Final Research Achievements |
In this research, we achieved the following two results. (1) For a given toric Fano manifold, we introduced an invariant of a Fano polytope which is likely to be a polar dual of the barycenter of the image under the moment map on a given toric Fano manifold. Under some assumption, it induces a simpler criterion for the existence of Kahler-Einstein metrics (or K stability) on a toric Fano manifold. (2) With a differential geometrical approach, we extended the moment map interpretation for balanced metrics to relative balanced metrics. Then, it implies the quantization of the extremal metrics and the extremal vector fields on a polarized manifold.
|
Report
(5 results)
Research Products
(17 results)
-
-
-
-
-
[Presentation] Minkowski Problem and Fano polytopes2015
Author(s)
Yuji Sano
Organizer
Moduli spaces and singularities in algebraic and Riemannian geometry
Place of Presentation
Simons Center for Geometry and Physics (New York, 米国)
Year and Date
2015-11-05
Related Report
Int'l Joint Research / Invited
-
-
-
-
-
-
-
-
-
-
-
-