• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Elucidation of communication emergence mechanism based on action time series in reinforcement learning agents.

Research Project

Project/Area Number 25871049
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Soft computing
Intelligent informatics
Research InstitutionOkinawa National College of Technology

Principal Investigator

Sato Takashi  沖縄工業高等専門学校, メディア情報工学科, 准教授 (70426576)

Research Collaborator HASHIMOTO Takashi  北陸先端科学技術大学院大学, 知識科学系知識マネジメント領域, 教授 (90313709)
Project Period (FY) 2013-04-01 – 2017-03-31
Project Status Completed (Fiscal Year 2016)
Budget Amount *help
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2015: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2014: ¥2,990,000 (Direct Cost: ¥2,300,000、Indirect Cost: ¥690,000)
Fiscal Year 2013: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Keywordsジェスチャー理論 / 原始的コミュニケーションの創発 / Q-learning / Neural Q-learning / Recurrent Q-learning / マルチエージェント・システム / 拡張版SOM / 暗示的フィードバック / 衝突回避ゲーム / 強化学習 / Recurrent-Q学習 / 基礎的行動の記号化 / Neural-Q学習 / ジェスチャー / Q学習 / マルチエージェント / コミュニケーションの創発
Outline of Final Research Achievements

Based on the gesture theory, we discussed an individual's ability and other factors necessary for emergence of proto-communication in a primitive society in which the communication was not established among the individuals. To verify the individual's ability aspect, we adopted a collision avoidance game and a reinforcement learning agents who can learn their action history as the game players. Our simulation showed that, by evaluating various models including a hybrid model between the Q-learning and the recurrent neural network, the abilities to learn and predict the past action history and its order can be played an important role in the emergence of communication. Also, to examine an element contributed to the formation of communication, we adopted a communication game with extended SOM learning agents. The second simulations suggested that "implicit feedback" obtained from situations other than individuals, which is proposed by us, can be improved the communication success rate.

Report

(5 results)
  • 2016 Annual Research Report   Final Research Report ( PDF )
  • 2015 Research-status Report
  • 2014 Research-status Report
  • 2013 Research-status Report
  • Research Products

    (7 results)

All 2017 2016 2015 2014

All Journal Article (2 results) (of which Peer Reviewed: 2 results,  Acknowledgement Compliant: 2 results) Presentation (5 results) (of which Int'l Joint Research: 1 results)

  • [Journal Article] Emergence of Proto-Communication using Action Primitives Symbolized in Recurrent Q-Learning Agents2016

    • Author(s)
      Takashi Sato
    • Journal Title

      Journal of Information and Communication Engineering (JICE)

      Volume: 2(2) Pages: 87-93

    • NAID

      40021152838

    • Related Report
      2015 Research-status Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Journal Article] 基礎的行動プリミティブの履歴情報学習によるコミュニケーションの萌芽2014

    • Author(s)
      佐藤 尚
    • Journal Title

      計測と制御

      Volume: 53 Pages: 847-852

    • NAID

      130005626586

    • Related Report
      2014 Research-status Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Presentation] 暗示的フィードバックに基づくコミュニケーション成功率の向上2017

    • Author(s)
      麓 有喜、佐藤 尚
    • Organizer
      (社)電子情報通信学会ニューロコンピューティング研究会
    • Place of Presentation
      沖縄科学技術大学院大学
    • Year and Date
      2017-06-23
    • Related Report
      2016 Annual Research Report
  • [Presentation] Symbolization of Action Primitives in Recurrent Q-Learning Agents playing a Collision Avoidance Game2016

    • Author(s)
      Takashi Sato
    • Organizer
      21th International Symposium on Artificial Life and Robotics (AROB 21st 2016)
    • Place of Presentation
      B-Con PLAZA, Beppu, JAPAN
    • Year and Date
      2016-01-20
    • Related Report
      2015 Research-status Report
    • Int'l Joint Research
  • [Presentation] 基礎的行動強化学習に基づくコミュニケーション創発現象の解析のためのエージェントモデルの構築2015

    • Author(s)
      佐藤 尚
    • Organizer
      複雑系科学×応用哲学 第2回沖縄研究会
    • Place of Presentation
      琉球大学(19、21日)、沖縄工業高等専門学校(20日)
    • Year and Date
      2015-08-19
    • Related Report
      2015 Research-status Report
  • [Presentation] 基礎的行動プリミティブの履歴情報学習によるコミュニケーションの萌芽2014

    • Author(s)
      佐藤 尚
    • Organizer
      計測自動制御学会 システム・情報部門学術講演会2014(SSI2014)
    • Place of Presentation
      岡山大学
    • Year and Date
      2014-11-21 – 2014-11-23
    • Related Report
      2014 Research-status Report
  • [Presentation] 衝突回避ゲームにおけるコミュニケーション創発現象の解析のためのQ学習およびNeural-Q学習エージェントの性能比較2014

    • Author(s)
      白﨑 史子、佐藤 尚
    • Organizer
      計測自動制御学会 システム・情報部門学術講演会2014(SSI2014)
    • Place of Presentation
      岡山大学
    • Year and Date
      2014-11-21 – 2014-11-23
    • Related Report
      2014 Research-status Report

URL: 

Published: 2014-07-25   Modified: 2019-07-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi